70 Bài tập về quy tắc tính đạo hàm (có đáp án năm 2024) - Toán 11

1900.edu.vn xin giới thiệu: Tổng hợp các dạng bài tập quy tắc tính đạo hàm Toán 11. Đây sẽ là tài liệu tham khảo hữu ích, giúp các bạn học sinh ôn tập và củng cố kiến thức đã học, tự luyện tập nhằm học tốt môn Toán 11, giải bài tập Toán 11 tốt hơn. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây.

Bài giảng Toán 11 Bài 2: Quy tắc tính đạo hàm

Kiến thức cần nhớ

a) Đạo hàm của một hàm số lượng giác

Đạo hàm các hàm số sơ cấp cơ bản

Đạo hàm các hàm hợp u = u(x)

(c)’ = 0 (c là hằng số)

(x)’ = 1

 

xα'=α.xα1

1x'=1x2;   x0x'=12x;   x>0

uα'=α.u'.uα1

1u'=u'u2u'=u'2u

b) Các quy tắc tính đạo hàm

Cho các hàm số u = u(x), v = v(x) có đạo hàm tại điểm x thuộc khoảng xác định. Ta có:

1. (u + v)’ = u’ + v’

2. (u – v)’ = u’ – v’

3. (u.v)’ = u’.v + v’.u

4. uv'=u'vv'uv2v=vx0

Chú ý:

a) (k.v)’ = k.v’ (k: hằng số)

b) 1v'=v'v2    v=v(x)0

Mở rộng:

u1±u2±...±un'=u1'±u2'±...±un'

u.v.w'=u'.v.w+u.v'.w+u.v.

c) Đạo hàm của hàm số hợp

Cho hàm số y = f(u(x)) = f(u) với u = u(x). Khi đó: yx'=yu'.ux'

2. Phương pháp giải

- Sử dụng các quy tắc, công thức tính đạo hàm trong phần lý thuyết.

- Nhận biết và tính đạo hàm của hàm số hợp, hàm số có nhiều biểu thức.

3. Ví dụ minh họa

Ví dụ 1: Tính đạo hàm của các hàm số tại các điểm x0 sau:

a) y = 7 + x – x2, với x0 = 1

b) y = 3x2 – 4x + 9, với x0 = 1

Lời giải

a) y = 7 + x – x2

Ta có: y' = 1 – 2x

Vậy  y'(1) = 1 – 2. 1 = –1.

b) y = 3x2 – 4x + 9

Ta có: y' = 6x – 4

Vậy y'(1) = 6.1 – 4 = 2.

Ví dụ 2: Tính các đạo hàm của các hàm số sau:

a) y = –x3 + 3x + 1

b) y = (2x – 3)(x– 2x)

c) y=x2x

d) y=2x+113x

e) y=2x24x+1x3

Lời giải

a) y’ = (–x3 + 3x + 1)’ = –3x2 + 3

b) y = (2x – 3)(x5 – 2x).

y’ = [(2x – 3)(x5 – 2x)]’

= (2x – 3)’.(x5 – 2x) + (x5 – 2x)’.(2x – 3)

= 2(x5 – 2x) + (5x4 – 2)(2x – 3)

= 12x– 15x4 – 8x + 6.

c) y=x2x

y'=x2x'=x2'.x+x'.x2

=2x.x+12x.x2=2xx+12xx=5xx2.

d) y=2x+113x 

y'=2x+113x'=2x+1'13x13x'2x+113x2

=213x+32x+113x2=513x2.

e) y=2x24x+1x3 

y'=2x24x+1'x3x3'2x24x+1x32

=4x4x32x24x+1x32=2x212x+11x32

Ví dụ 3: Tính đạo hàm của các hàm số sau:

a) y = (x7 + x)2

b) y = (1 – 2x2)3

c) y=2x+1x13

d) y = (1 + 2x)(2 + 3x2)(3 – 4x3)

e) y=1+2xx2

f) y=1+x1x

Lời giải

a) y = (x7 + x)2. Sử dụng công thức uα'=α.uα1.u' (với u = x7 + x)

y' = 2(x7 + x).(x7 + x)’ = 2(x7 + x)(7x6 + 1).

b) y = (1 – 2x2)3. Sử dụng công thức uα'với u = 1 – 2x2

y' = 3(1 – 2x2)2.(1 – 2x2)’ = 3(1 – 2x2)2(– 4x) = – 12x(1 – 2x2)2.

c) y=2x+1x13

Bước đầu tiên sử dụng uα', với u=2x+1x1

y'=3.2x+1x12.2x+1x1'=3.2x+1x12.3x12=92x+12x14.

d) y = (1 + 2x)(2 + 3x2)(3 – 4x3)

y’ = (1 + 2x)’(2 + 3x2)(3 – 4x3) + (1 + 2x)(2 + 3x2)’(3 – 4x3) + (1 + 2x)(2 + 3x2)(3 – 4x3)’

y’ = 2(2 + 3x2)(3 – 4x3) + (1 + 2x)(6x)(3 – 4x3) + (1 + 2x)(2 + 3x2)(– 12x2)

y’ = 12 – 16x3 + 18x2 – 24x5 + 18x – 24x4 + 36x2 – 48x5 – 72x5 – 36x4 – 48x3 – 12x2

y’ = – 144x5 – 60x4 – 64x3 + 42x2 + 18x + 12.

e) y=1+2xx2. Sử dụng công thức u' với u = 1 + 2x – x2

y'=1+2xx2'21+2xx2=22x21+2xx2=1x1+2xx2.

f) y=1+x1x. Sử dụng uv' được:

y'=1+x'1x1x'1+x1x2 

=1x1x'21x.1+x1x

=21x+1+x21x.1x=3x21x1x.

Các dạng bài toán về quy tắc tính đạo hàm

Dạng 1. Đạo hàm của hàm đa thức.

Dạng 2. Đạo hàm của hàm phân thức.

Dạng 3. Đạo hàm của hàm chứa căn.

Bài tập tự luyện

1. Bài tập vận dụng

Câu 1. Cho hàm số f(x) xác định trên R bởi f(x) = 2x2 + 1. Giá trị f’(– 1) bằng:

A. 2                      

B. 6                          

C. – 4                       

D. 3

Câu 2. Cho hàm số f(x) = – 2x2 + 3x xác định trên R. Khi đó f'(x) bằng:

A. – 4x – 3           

B. –4x + 3                

C. 4x + 3                  

D. 4x – 3

Câu 3. Đạo hàm của hàm số y = (1 – x3)5 là:

A. y' = 5(1 – x3)4                                    

B. y' = –15x2(1 – x3)4

C. y' = –3(1 – x3)4                                  

D. y' = –5x2(1 – x3)4

Câu 4. Đạo hàm của hàm số y = (x2 – x + 1)5 là:

A. 4(x2 – x + 1)4(2x – 1)                        

B. 5(x2 – x + 1)4

C. 5(x2 – x + 1)4(2x – 1)                        

D. (x2 – x + 1)4(2x – 1)

Câu 5. Đạo hàm của hàm số y=2x5+4x bằng biểu thức nào dưới đây?

A. 10x4+1x      

B. 10x4+4x          

C. 10x4+2x          

D. 10x41x

Câu 6. Hàm số y=2x+1x1 có đạo hàm là:

A. y’ = 2               

B. y'=1x12        

C. y'=3x12       

D. y'=1x12

Câu 7. Đạo hàm của hàm số y=x2+x+1 bằng biểu thức có dạng ax+b2x2+x+1. Khi đó a – b bằng:

A. a – b = 2          

B. a – b = –1            

C. a – b = 1              

D. a – b = –2

Câu 8. Cho hàm số y=x2+xx2 đạo hàm của hàm số tại x = 1 là:

A. y'(1) = –4         

B. y'(1) = –5             

C. y'(1) = –3            

D. y'(1) = –2

Câu 9. Cho hàm số y=x4x2. Tính y'(0) bằng:

A. y'0=12         

B. y'0=13              

C. y'(0) = 1              

D. y'(0) = 2

Câu 10. Hàm số y=x221x có đạo hàm là:

A. y'=x2+2x1x2.  

B. y'=x22x1x2.        

C. y’ = -2(x – 2)       

D. y'=x2+2x1x2

Câu 11. Cho hàm số f(x) xác định trên D=0;+ cho bởi fx=xx có đạo hàm là:

A. f'x=12x     

B. f'x=32x         

C. f'x=12xx        

D. f'x=x+x2

Câu 12. Hàm số fx=x1x2 xác định trên D=0;+. Đạo hàm của f(x)là:

A. f'x=x+1x2                                                                 

B. f'x=x1x2

C. f'x=x1x                                                                  

D. f'x=11x2

Câu 13. Đạo hàm của hàm số y=x2+x+3x2+x1 bằng biểu thức có dạng ax+bx2+x12. Khi đó a + b bằng:

A. a + b = –10      

B. a + b = 5              

C. a + b = –10          

D. a + b = –12

Câu 14. Đạo hàm của hàm số y = (x2 + 1)(5 – 3x2) bằng biểu thức có dạng ax3 + bx. Khi đó T=ab bằng:

A. – 1                   

B. –2                        

C. 3                          

D. – 3

Câu 15. Đạo hàm của hàm số y = x2(2x + 1)(5x – 3) bằng biểu thức có dạng ax3 + bx2 + cx. Khi đó a + b + c bằng:

A. 31                    

B. 24                        

C. 51                        

D. 34

Bảng đáp án

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

C

B

B

C

C

C

C

B

A

A

B

D

D

D

A

2. Bài tập tự luyện có hướng dẫn

Xem thêm các dạng bài tập liên quan khác:

70 Bài tập về đạo hàm của hàm số lượng giác (có đáp án năm 2023)

500 Bài tập Toán 11 chương 5: Đạo hàm (có đáp án năm 2023)

70 Bài tập về phép biến hình (có đáp án năm 2023)

70 Bài tập về phép tịnh tiến (có đáp án năm 2023)

70 Bài tập về phép đối xứng trục (có đáp án năm 2023)

 
 
70 Bài tập về quy tắc tính đạo hàm (có đáp án năm 2024) - Toán 11 (trang 1)
Trang 1
70 Bài tập về quy tắc tính đạo hàm (có đáp án năm 2024) - Toán 11 (trang 2)
Trang 2
70 Bài tập về quy tắc tính đạo hàm (có đáp án năm 2024) - Toán 11 (trang 3)
Trang 3
70 Bài tập về quy tắc tính đạo hàm (có đáp án năm 2024) - Toán 11 (trang 4)
Trang 4
70 Bài tập về quy tắc tính đạo hàm (có đáp án năm 2024) - Toán 11 (trang 5)
Trang 5
70 Bài tập về quy tắc tính đạo hàm (có đáp án năm 2024) - Toán 11 (trang 6)
Trang 6
70 Bài tập về quy tắc tính đạo hàm (có đáp án năm 2024) - Toán 11 (trang 7)
Trang 7
70 Bài tập về quy tắc tính đạo hàm (có đáp án năm 2024) - Toán 11 (trang 8)
Trang 8
Để xem toàn bộ tài liệu, vui lòng tải xuống
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!