70 Bài tập về một số phương trình lượng giác thường gặp (có đáp án năm 2024) - Toán 11

1900.edu.vn xin giới thiệu: Tổng hợp các dạng bài tập một số phương trình lượng giác thường gặp Toán 11. Đây sẽ là tài liệu tham khảo hữu ích, giúp các bạn học sinh ôn tập và củng cố kiến thức đã học, tự luyện tập nhằm học tốt môn Toán 11, giải bài tập Toán 11 tốt hơn. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây.

Bài giảng Toán 11 Bài 3: Một số phương trình lượng giác thường gặp (T1)

Bài giảng Toán 11 Bài 3: Một số phương trình lượng giác thường gặp (T2)

Kiến thức cần nhớ

I. Phương  trình bậc nhất đối với một hàm số lượng giác

1. Định nghĩa.

Phương trình bậc nhất đối với một hàm số lượng giác là phương trình có dạng:

at + b =  0   (1)

Trong đó; a, b là các hằng số (a ≠ 0) và t là một trong các hàm số lượng giác.

- Ví dụ 1.

a) – 3sinx + 8 = 0 là phương trình bậc nhất đối với sinx.

b) 6cotx + 10 = 0 là phương trình bậc nhất đối với cotx.

2. Cách giải

Chuyển vế rồi chia hai vế của phương trình (1) cho a, ta đưa phương trình (1) về phương trình lượng giác cơ bản.

Ví dụ 2. Giải các phương trình sau:

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Lời giải:

a) Từ 2sinx – 4 = 0, chuyển vế ta có: 2sinx = 4 (2)

Chia 2 vế của phương trình (2) cho 2, ta được: sinx = 2.

Vì 2 > 1 nên phương trình đã cho vô nghiệm.

b) Từ 3tanx3=0, chuyển vế ta có: 3tanx=3 (3)

Chia cả 2 vế của phương trình (3) cho ta được: tanx=33.

tanx=tanπ6x=π6+​ kπ;  k

3. Phương trình đưa về phương trình bậc nhất đối với một hàm số lượng giác.

- Phương pháp:

Sử dụng các công thức biến đổi lượng giác đã được học để đưa về phương trình bậc nhất đối với hàm số lượng giác hoặc đưa về phương trình tích để giải phương trình.

- Ví dụ 3. Giải các phương trình:

a) sin2x – cosx = 0;

b) – 4sinx. cosx. cos2x = 1.

Lời giải:

a) Ta có: sin2x – cosx = 0

2sinx. cosx – cosx = 0

cosx. (2sinx – 1) = 0

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Vậy phương trình đã cho có các nghiệm là: x  =  π2  +  kπx  =  π6  +  k2π và x  =  5π6  +  k2π;  k.

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

II. Phương trình bậc hai đối với một hàm số lượng giác

1. Định nghĩa.

Phương trình bậc hai đối với một hàm số lượng giác là phương trình có dạng:

at2 + bt + c = 0

Trong đó a; b; c là các hằng số (a ≠ 0) và t là một trong các hàm số lượng giác.

- Ví dụ 4.

a) 3cos2x – 5cosx + 2 = 0 là phương trình bậc hai đối với cosx.

b) – 10tan2x + 10tanx = 0 là phương trình bậc hai đối với tanx.

2. Cách giải.

Đặt biểu thức lượng giác làm ẩn phụ và đặt điều kiện cho ẩn phụ (nếu có) rồi giải phương trình theo ẩn phụ này.

Cuối cùng ta đưa về việc giải các phương trình lượng giác cơ bản.

- Ví dụ 5. Giải phương trình: 2cos2x – 4 cosx = 0.

Lời giải:

Đặt t = cosx với điều kiện: – 1 ≤ t ≤ 1 .

Ta được phương trình bậc hai ẩn t là: 2t2 – 4t = 0 t=0t  =2

Trong hai nghiệm này chỉ có nghiệm t = 0 thỏa mãn.

Với t = 0 thì cos x = 0

x=  π2  +  kπ;  k

Vậy phương trình đã cho có nghiệm là x=  π2  +  kπ;  k.

3. Phương trình đưa về dạng phương trình bậc hai đối với một hàm số lượng giác.

- Phương pháp:

Sử dụng các công thức lượng giác đã học để biến đổi đưa về dạng phương trình bậc hai đối với một hàm số lượng giác.

- Ví dụ 6. Giải phương trình 3sin2x – 6cosx – 3 = 0.

Lời giải:

Vì sin2x = 1 – cos2x nên phương trình đã cho tương đương:

3(1 – cos2x) – 6cosx – 3 = 0

– 3cos2 x – 6cosx = 0  (*)

Đăt t = cosx với điều kiện: – 1 ≤ t ≤ 1 , phương trình (*) trở thành:

– 3t2 – 6t = 0 t=0t=2.

Trong hai nghiệm này, chỉ có nghiệm t = 0 thỏa mãn.

Với t = 0 thì; cosx = 0 vx=  π2  +  kπ;  k.

Vậy phương trình đã cho có nghiệm là x=  π2  +  kπ;  k.

- Ví dụ 7. Giải phương trình: sin2x – 3sinx. cosx + 2cos2x = 0  (1).

Lời giải:

+ Nếu cosx = 0 thì sin2x = 1 nên phương trình (1) có :

VT(1) = 1 và VP(1) = 0

Suy ra, cos x = 0 không thỏa mãn phương trình (1) . Vậy cosx ≠ 0.

+ Vì cosx ≠ 0 nên chia hai vế của phương trình (1) cho cos2 x, ta được:

tan2x – 3tanx + 2 = 0  (2)

Đặt t = tanx, phương trình (2) trở thành: t2 – 3t + 2 =  0

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Vậy phương trình đã cho có các nghiệm là

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

III. Phương trình bậc nhất đối với sinx và cosx.

1. Công thức biến đổi biểu thức a.sinx + b.cosx

Ta có công thức biến đổi sau:

asinx+ ​b.cosx  =   a  2+​  b2.sin(x+α)  1

Trong đó; 

cosα  =   aa2+b2;  sinα=  ba2+b2

2. Phương trình dạng: asinx + b.cosx = c.

Xét phương trình: asinx + bcosx = c  (2)

Với a; b; c ; a, b không đồng thời bằng 0.

- Nếu a = 0 ; b ≠ 0 hoặc a ≠ 0; b = 0 phương trình (2) có thể đưa ngay về phương trình lượng giác cơ bản.

- Nếu a ≠ 0; b ≠ 0, ta áp dụng công thức (1).

Ví dụ 8. Giải phương trình: 3sinx  cosx =  2.

Lời giải:

Theo công thức (1) ta có:

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Các dạng bài toán về một số phương trình lượng giác thường gặp

Dạng 1: Phương trình thuần nhất đối với sin x và cos x.

Dạng 2: Phương trình đẳng cấp bậc hai, bậc ba.

Dạng 3: Phương trình đối xứng.

Bài tập tự luyện

1. Bài tập vận dụng

Bài 1. Giải các phương trình sau:

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Lời giải:

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Vậy các nghiệm của phương trình đã cho là

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Trong hai nghiệm thì chỉ có nghiệm t = 1 thỏa mãn.

Với t = 1 thì sinx = 1x  =  π2+​ k2π;  k .

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Đặt t = tan x (với t ≠ 0), phương trình (3) trở thành:

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Bài 2. Giải các phương trình:

a) 2sin2 x + 2sinx. cosx – 4cos2x = 0;

b) 3sin2x + sin2x + 3cos2x = 2.

Lời giải:

a) 2sin2 x + 2sinx. cosx – 4cos2x = 0   (1)

+ Nếu cosx = 0 thì sin2x = 1 nên phương trình (1) có :

VT(1) = 2 và VP(1) = 0

Suy ra, cos x = 0 không thỏa mãn phương trình (1) . Vậy cosx ≠ 0.

+ Vì cosx ≠ 0 nên chia hai vế của phương trình (1) cho cos2 x, ta được:

2tan2x + 2tanx – 4 = 0  (2)

Đặt t = tanx, phương trình (2) trở thành: 2t2 + 2t – 4 =  0

t  =1t=2

Với t = 1 thì tanx = 1 x  =π4  +  kπ;  k.

Với t = –2 thì tanx = – 2x  =arctan2+  kπ;  k

Vậy phương trình đã cho có các nghiệm là

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

+ Nếu cosx = 0 thì sin2x = 1 nên phương trình (2) có :

VT(2) = 3 và VP(2) = 2

Suy ra, cos x = 0 không thỏa mãn phương trình (2) . Vậy cosx ≠ 0.

+ Vì cosx ≠ 0 nên chia hai vế của phương trình (2) cho cos2 x, ta được:

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Đặt t = tanx, phương trình (3) trở thành:

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Bài 3. Giải các phương trình sau:

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Lời giải:

a) Ta có:

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Vì  413> 1 nên phương trình (1) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Bài 4. Giải phương trình: 

sin2x  3cosx  =sinx3cos2x

Lời giải:

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Lý thuyết Một số phương trình lượng giác thường gặp chi tiết – Toán lớp 11 (ảnh 1)

Vậy nghiệm của phương trình là

 x=k2π;   x=π9+k2π3    k

Bài 5: Giải các phương trình lượng giác sau:

a) sinx = sin(π/6)        c) tanx – 1 = 0

b) 2cosx = 1.        d) cotx = tan2x.

Hướng dẫn:

a) sin⁡x = sin⁡π/6

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

b)

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

c) tan⁡x=1⇔cos⁡x= π/4+kπ (k ∈ Z)

d) cot⁡x=tan⁡2x

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 6: Giải các phương trình lượng giác sau:

a) cos2 x - sin2x =0.

b) 2sin(2x – 40º) = √3

Hướng dẫn:

a) cos2x-sin2x=0 ⇔cos2x-2 sin⁡x cos⁡x=0

        ⇔ cos⁡x (cos⁡x - 2 sin⁡x )=0

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

b) 2 sin⁡(2x-40º )=√3

⇔ sin⁡(2x-40º )=√3/2

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 7: Giải các phương trình lượng giác sau:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

a) sin⁡(2x+1)=cos⁡(3x+2)

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

b)

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

⇔ sin⁡x+1=1+4k

⇔ sin⁡x=4k (k ∈ Z)

Nếu |4k| > 1⇔|k| > 1/4; phương trình vô nghiệm

Nếu |4k| ≤ 1 mà k nguyên ⇒ k = 0 .Khi đó:

        ⇔sin⁡x = 0 ⇔ x = mπ (m ∈ Z)

Bài 8: 1/(sin2 x)+tanx-1=0

Lời giải:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 9: cosx – sin2x = 0

Lời giải:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 10: cos2x + cosx – 2 = 0

Lời giải:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 11: Giải phương trình sau: cos2x – sin2x = 0.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 12: Giải phương trình sau: sin3x - √3 cos3x = 2sin2x.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Xem thêm các dạng bài tập hay, có đáp án:

500 Bài tập Toán 11 chương 1: Hàm số lượng giác và phương trình lượng giác (có đáp án năm 2024)

150 Bài tập về hàm số lượng giác (có đáp án năm 2024) - Toán 11

100 Bài tập về phương trình lượng giác cơ bản (có đáp án năm 2023) - Toán 11

70 Bài tập về đạo hàm của hàm số lượng giác (có đáp án năm 2024) - Toán 11

90 Bài tập giá trị lượng giác của một góc từ 0 độ đến 180 độ (có đáp án năm 2024) - Toán 10

70 Bài tập về một số phương trình lượng giác thường gặp (có đáp án năm 2024) - Toán 11 (trang 1)
Trang 1
70 Bài tập về một số phương trình lượng giác thường gặp (có đáp án năm 2024) - Toán 11 (trang 2)
Trang 2
70 Bài tập về một số phương trình lượng giác thường gặp (có đáp án năm 2024) - Toán 11 (trang 3)
Trang 3
70 Bài tập về một số phương trình lượng giác thường gặp (có đáp án năm 2024) - Toán 11 (trang 4)
Trang 4
70 Bài tập về một số phương trình lượng giác thường gặp (có đáp án năm 2024) - Toán 11 (trang 5)
Trang 5
70 Bài tập về một số phương trình lượng giác thường gặp (có đáp án năm 2024) - Toán 11 (trang 6)
Trang 6
70 Bài tập về một số phương trình lượng giác thường gặp (có đáp án năm 2024) - Toán 11 (trang 7)
Trang 7
70 Bài tập về một số phương trình lượng giác thường gặp (có đáp án năm 2024) - Toán 11 (trang 8)
Trang 8
Để xem toàn bộ tài liệu, vui lòng tải xuống
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!