50 Bài tập Ôn tập: So sánh hai phân số (có đáp án năm 2024) - Toán lớp 5

1900.edu.vn xin giới thiệu: Ôn tập: So sánh hai phân số Toán lớp 5. Đây sẽ là tài liệu tham khảo hữu ích, giúp các bạn học sinh ôn tập và củng cố kiến thức đã học, tự luyện tập nhằm học tốt môn Toán lớp 5, giải bài tập Toán lớp 5 tốt hơn. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây.

Bài tập Ôn tập: So sánh hai phân số

Kiến thức cần nhớ 

1. So sánh hai phân số cùng mẫu số

Quy tắc: Trong hai phân số có cùng mẫu số:

+) Phân số nào có tử số bé hơn thì phân số đó bé hơn.

+) Phân số nào có tử số lớn hơn thì phân số đó lớn hơn.

+) Nếu tử số bằng nhau thì hai phân số đó bằng nhau.

Ví dụ:

25<35, 35>25, 25=25

2. So sánh hai phân số cùng tử số

Quy tắc: Trong hai phân số có cùng tử số:

+) Phân số nào có mẫu số bé hơn thì phân số đó lớn hơn.

+) Phân số nào có mẫu số lớn hơn thì phân số đó bé hơn.

+) Nếu mẫu số bằng nhau thì hai phân số đó bằng nhau.

Ví dụ:  

12>14; 25<23; 56=56

Chú ý: Phần so sánh các phân số cùng tử số, học sinh rất hay bị nhầm, các bạn học sinh nên chú ý nhớ và hiểu đúng quy tắc.

3. So sánh các phân số khác mẫu

a) Quy đồng mẫu số

Quy tắc: Muốn so sánh hai phân số khác mẫu số, ta có thể quy đồng mẫu số hai phân số đó rồi so sánh các tử số của hai phân số mới.

Phương pháp giải:

Bước 1: Quy đồng mẫu số hai phân số.

Bước 2: So sánh hai phân số có cùng mẫu số đó.

Bước 3: Rút ra kết luận.

Ví dụ: So sánh hai phân số 23 và 34.

Cách giải:

23=2×43×4=81234=3×34×3=912

Ta có: 812<912 (vì 8<9)

Vậy 23<34.

b) Quy đồng tử số

Điều kiện áp dụng: Khi hai phân số có mẫu số khác nhau nhưng mẫu số rất lớn và tử số nhỏ thì ta nên áp dụng cách quy đồng tử số để việc tính toán trở nên dễ dàng hơn.

Quy tắc: Muốn so sánh hai phân số khác tử số, ta có thể quy đồng tử số hai phân số đó rồi so sánh các mẫu số của hai phân số mới.

Phương pháp giải:

Bước 1: Quy đồng tử số hai phân số.

Bước 2: So sánh hai phân số có cùng tử số đó.

Bước 3: Rút ra kết luận.

Ví dụ: So sánh hai phân số: 2125 và 3187

Cách giải:

Ta có: 2125=2×3125×3=6375

3187=3×2187×2=6374

Vì 374<375 nên 6374>6375.

Các dạng toán về ôn tập: so sánh hai phân số

Dạng 1: So sánh với 1

Điều kiện áp dụng:  Phương pháp này áp dụng cho dạng bài so sánh hai phân số, trong đó một phân số bé hơn 1 và một phân số lớn hơn 1.

Ví dụ: So sánh hai phân số 89 và 75.

Cách giải:

Vì 89<1 và 1<75 nên 89<75

Dạng 2: So sánh với phân số trung gian

Điều kiện áp dụng: Phương pháp này áp dụng khi tử số của phân số thứ nhất bé hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại lớn hơn mẫu số của phân số thứ hai hoặc ngược lại. Khi đó ta so sánh với phân số trung gian là phân số có tử số bằng tử số của phân số thứ nhất, có mẫu số bằng mẫu số của phân số thứ hai hoặc ngược lại.

Phương pháp giải:

Bước 1: Chọn phân số trung gian.

Bước 2: So sánh hai phân số ban đầu với phân số trung gian.

Bước 3: Rút ra kết luận.

Lưu ý: So sánh hai phân số ab và cd (a, b, c, d  khác 0).

Nếu a > c và b < d (hoặc a < c và b>d  thì ta có thể chọn phân số trung gian là ad hoặc cb

Ví dụ: So sánh hai phân số 2735 và 2833

Cách giải:

Chọn phân số trung gian là 2733

Ta thấy 2735<2733 và 2733<2833 nên 2735<2833

Dạng 3: So sánh bằng phần bù 

Điều kiện áp dụng: Nhận thấy mẫu số lớn hơn tử số (phân số bé hơn 1) và hiệu của mẫu số với tử số của tất cả các phân số đều bằng nhau hoặc nhỏ thì ta tìm phần bù với 1.

Chú ý: Phần bù với 1 của phân số là hiệu giữa 1 và phân số đó.

Quy tắc: Trong hai phân số, phân số nào có phần bù lớn hơn thì phân số đó nhỏ hơn và ngược lại phân số nào có phần bù nhỏ hơn thì phân số đó lớn hơn.

Phương pháp giải:

Bước 1: Tìm phần bù của hai phân số.

Bước 2: So sánh hai phần bù với nhau.

Bước 3: Rút ra kết luận.

Ví dụ: So sánh hai phân số 997998 và 998999

Cách giải:

997998=11998998999=11999

Vì 998<999 nên 1998>1999. Do đó, 11998<11999

Do đó, 997998<998999.

Dạng 4: So sánh bằng phần hơn

Điều kiện áp dụng: Nhận thấy tử số lớn hơn mẫu số ( phân số lớn hơn 1) và hiệu của tử số với mẫu số của tất cả các phân số đều bằng nhau hoặc nhỏ thì ta tìm phần hơn với 1.

Chú ý: Phần hơn với 1 của phân số là hiệu giữa phân số đó và 1.

Quy tắc: Trong hai phân số, phân số nào có phần hơn lớn hơn thì phân số đó lớn hơn và ngược lại phân số nào có phần hơn nhỏ hơn thì phân số đó nhỏ hơn.

Phương pháp giải:

Bước 1: Tìm phần hơn của hai phân số.

Bước 2: So sánh hai phần hơn với nhau.

Bước 3: Rút ra kết luận.

Ví dụ: So sánh hai phân số 335333 và 279277

Giải

335333=1+2333279277=1+2277

Vì 333>277 nên 2333<2277. Do đó, 1+2333<1+2277

Vậy 335333<279277.

Bài tập tự luyện 

Bài tập tự luyện số 1

I. Bài tập trắc nghiệm

Câu 1: Trong các phân số dưới đây, phân số lớn hơn phân số \frac{7}{{10}} là:

A. 35

B. \frac{{10}}{{12}}

C. \frac{2}{5}

D. \frac{{20}}{{25}}

Câu 2: Trong các phân số dưới đây, phân số nhỏ hơn phân số \frac{3}{4}là:

A. \frac{1}{2}

B. \frac{3}{1}

C. \frac{{12}}{9}

D. \frac{5}{3}

Câu 3: Dấu <, >, = thích hợp để điền vào chỗ chấm \frac{5}{4}...\frac{7}{4} là:

A. >

B. < 

C. = 

D. Không có dấu thích hợp

Câu 4: Phân số nào dưới đây bằng với số 1?

A. \frac{7}{{10}}

B. \frac{{15}}{6}

C. \frac{5}{5}

D. \frac{9}{{12}}

Câu 5: Phân số nào dưới đây bằng với phân số \frac{{11}}{2}

A. \frac{{44}}{7}

B. \frac{9}{{33}}

C. \frac{{11}}{1}

D. \frac{{22}}{4}

II. Bài tập tự luận

Bài 1: Điền dấu <, >, = thích hợp vào chỗ chấm:

34...56                              14...54 

65...67                             415...830

Bài 2: Viết các phân số sau theo thứ tự từ bé đến lớn: \frac{1}{3};\frac{{12}}{9};\frac{5}{8}

Bài 3: Viết các phân số sau theo thứ tự từ lớn đến bé: \frac{5}{4};\frac{4}{{12}};\frac{9}{8}

Bài 4: So sánh các phân số sau với 1: \frac{5}{6};\frac{7}{3};\frac{{13}}{{13}}

Bài 5: Lan có một số quyển vở. Lan cho Hà \frac{1}{4}số quyển vở và cho Hoa \frac{2}{3}số quyển vở. Hỏi Lan cho bạn nào nhiều quyển vở hơn?

Hướng dẫn giải

I. Bài tập trắc nghiệm

Câu 1 Câu 2 Câu 3 Câu 4 Câu 5
D A B C D

II. Bài tập tự luận

Bài 1:

\frac{3}{4} < \frac{5}{6}                            \frac{1}{4} < \frac{5}{4}                         \frac{6}{5} > \frac{6}{7}                          \frac{4}{{15}} = \frac{8}{{30}}

Bài 2: Vì \frac{1}{3} = \frac{{1 \times 8}}{{3 \times 8}} = \frac{8}{{24}};\frac{{12}}{9} = \frac{{12:3}}{{9:3}} = \frac{4}{3} = \frac{{4 \times 8}}{{3 \times 8}} = \frac{{32}}{{24}};\frac{5}{8} = \frac{{5 \times 3}}{{8 \times 3}} = \frac{{15}}{{24}} nên khi sắp xếp các phân số theo thứ tự từ bé đến hơn ta được \frac{1}{3};\frac{5}{8};\frac{{12}}{9}

Bài 3: Vì \frac{5}{4} = \frac{{5 \times 6}}{{4 \times 6}} = \frac{{30}}{{24}};\frac{4}{{12}} = \frac{{4:4}}{{12:4}} = \frac{1}{3} = \frac{{1 \times 8}}{{3 \times 8}} = \frac{8}{{24}};\frac{9}{8} = \frac{{9 \times 3}}{{8 \times 3}} = \frac{{27}}{{24}} nên khi sắp xếp các phân số theo thứ tự từ lớn đến bé ta được \frac{5}{4};\frac{9}{8};\frac{4}{{12}}

Bài 4: \frac{5}{6} < 1;\frac{7}{3} > 1;\frac{{13}}{{13}} = 1

Bài 5:

Vì \frac{1}{4} = \frac{{1 \times 3}}{{4 \times 3}} = \frac{3}{{12}};\frac{2}{3} = \frac{{2 \times 4}}{{3 \times 4}} = \frac{8}{{12}} nên \frac{1}{4} < \frac{2}{3}. Vậy Lan cho Hoa nhiều quyển vở hơn

Bài tập tự luyện số 2

Câu 1: Dấu thích hợp để điền vào chỗ chấm \frac{11}{12}....\frac5{12} là:

Hướng dẫn giải

Trong hai phân số cùng mẫu số:+ Phân số nào có tử số bé hơn thì phân số đó bé hơn.+ Phân số nào có tử số lớn hơn thì phân số đó lớn hơn.+ Nếu tử số bằng nhau thì hai phân số bằng nhau.

 Vì 11 > 5 nên \frac{11}{12}>\frac5{12}

Câu 2: Dấu thích hợp để điền vào chỗ chấm \frac45...\frac37 là:

Hướng dẫn giải

Muốn so sánh hai phân số khác mẫu số, ta có thể quy đồng mẫu số hai phân số đó rồi so sánh các tử số của chúng.

Có 5 x 7 = 35 nên chọn 35 là mẫu số chung. Quy đồng mẫu số hai phân số, ta được:

\frac45=\frac{4\times7}{5\times7}=\frac{28}{35};\,\,\frac37=\frac{3\times5}{7\times5}=\frac{15}{35}
Vì 28 > 15 nên \frac{28}{35}>\frac{15}{35} hay \frac45>\frac37

Câu 3:

Trong các phân số \frac76;\,\,\,\frac5{12};\,\,\frac23;\,\,\,\frac{11}{15} phân số lớn nhất là phân số:

Hướng dẫn giải

Muốn so sánh hai phân số khác mẫu số, ta có thể quy đồng mẫu số hai phân số đó rồi so sánh các tử số của chúng.

Vì 60 : 3 = 20; 60 : 15 = 4; 60 : 6 = 10; 60 : 12 = 5 nên chọn 60 là mẫu số chung. Quy đồng mẫu số các phân số, ta có:

\frac23=\frac{2\times20}{3\times20}=\frac{40}{60};\,\,\frac{11}{15}=\frac{11\times4}{15\times4}=\frac{44}{60}
\frac76=\frac{7\times10}{6\times10}=\frac{70}{60};\,\,\,\frac5{12}=\frac{5\times5}{12\times5}=\frac{25}{60}
Có 25 < 40 < 44 < 70 nên \frac{25}{60}<\frac{40}{60}<\frac{44}{60}<\frac{77}{60} hay \frac5{12}<\frac23<\frac{11}{15}<\frac76
Vậy \frac76 là phân số lớn nhất trong 4 phân số đã cho.

Câu 4: Trong các phân số \frac74;\,\,\,\frac3{11};\,\,\frac65;\,\,\,\frac{15}{12};\,\,\,\frac29 có bao nhiêu phân số bé hơn phân số \frac45?

Hướng dẫn giải

Muốn so sánh hai phân số khác mẫu số, ta có thể quy đồng mẫu số hai phân số đó rồi so sánh các tử số của chúng.

Có 4 < 6 nên \frac45<\frac65
Rút gọn phân số \frac{15}{12} được \frac{15}{12}=\frac{15:3}{12:3}=\frac54
Có 7 > 5 nên \frac74>\frac54
So sánh hai phân số \frac54 và \frac45 được \frac54>\frac45
So sánh ba phân số \frac45;\,\,\frac3{11};\,\,\frac29 được \frac45>\,\frac3{11}>\,\frac29
Vậy có hai phân số bé hơn phân số \frac45

Câu 5: Phân số thích hợp để điền vào chỗ chấm \frac25<...<\frac45 là:

Hướng dẫn giải

Trong hai phân số cùng mẫu số:+ Phân số nào có tử số bé hơn thì phân số đó bé hơn.+ Phân số nào có tử số lớn hơn thì phân số đó lớn hơn.+ Nếu tử số bằng nhau thì hai phân số bằng nhau.
Vì 2 < 3 < 4 nên \frac25<\frac35<\frac45

Câu 6: Thầy giáo tặng cho Dũng và Minh một số quyển vở. Dũng được tặng \frac15 số quyển vở, Minh được tặng \frac27 số quyển vở. Hỏi bạn nào được tặng nhiều quyển vở hơn?

Hướng dẫn giải

So sánh hai phân số chỉ số vở mà Dũng với Minh được tặng để tìm bạn nào được tặng nhiều quyển vở hơn.

Có 5 x 7 = 35 nên chọn 35 là mẫu số chung. Quy đồng mẫu số hai phân số được:
 
\frac15=\frac{1\times7}{5\times7}=\frac7{35};\,\,\frac27=\frac{2\times5}{7\times5}=\frac{10}{35}
 
Vì 7 < 10 nên \frac7{35}<\frac{10}{35} hay \frac15<\frac27
 
Vậy bạn Minh được thầy giáo tặng cho nhiều vở hơn.

Câu 7: Sắp xếp các phân số \frac27;\,\,\frac95;\,\,\frac44;\,\,\frac6{13} theo thứ tự từ lớn đến bé được:

Hướng dẫn giải

Muốn so sánh hai phân số khác mẫu số, ta có thể quy đồng mẫu số hai phân số đó rồi so sánh các tử số của chúng.

Nhận thấy \frac44=1
Có 1=\frac55<\frac95;\;\;1=\frac77>\frac27;\;\;1=\frac{13}{13}>\frac6{13}
So sánh hai phân số \frac27;\,\,\frac6{13}được \frac27<\frac6{13}
Sắp xếp các phân số theo thứ tự giảm dần được: \frac95;\,\,\frac44;\,\,\frac6{13};\,\,\frac27

Câu 8: Rút gọn rồi so sánh hai phân số \frac{1550}{3000} và \frac{1212}{1515}. Phát biểu nào dưới đây đúng?

Hướng dẫn giải

Rút gọn hai phân số về phân số tối giản và thực hiện so sánh hai phân số

Có \frac{1212}{1515}=\frac{1212:101}{1515:101}=\frac{12}{15}=\frac{12:3}{15:3}=\frac45và \frac{1550}{3000}=\frac{1550:50}{3000:50}=\frac{31}{60}

Vì 60 : 5 = 12 nên chọn 60 là mẫu số chung. Quy đồng mẫu số hai phân số được:
\frac45=\frac{4\times12}{5\times12}=\frac{48}{60}; giữ nguyên phân số \frac{31}{60}

Có 48 > 31 nên \frac{48}{60}>\frac{31}{60} hay \frac{1212}{1515}>\frac{1550}{3000}

Câu 9: Cho hai phân số A=\frac{31995-81}{42660-108} và B=\frac{3\times5\times7\times11\times13\times15\times37-10101}{121212+40404}. Rút gọn và so sánh hai phân số được:

Hướng dẫn giải

Rút gọn các phân số về phân số tối giản và so sánh hai phân số.

Ta có A=\frac{31995-81}{42660-108}=\frac{31914}{42552}=\frac{31914:10638}{42552:10638}=\frac34
\hspace{0.167em}B=\frac{3\times5\times7\times11\times13\times15\times37-10101}{121212+40404}
=\frac{3\times5\times7\times11\times13\times15\times37-3\times7\times13\times37}{3\times7\times13\times37\times12+3\times7\times13\times37\times4}
=\frac{3\times7\times13\times37\times\left(5\times11\times15-1\right)}{3\times7\times13\times37\times\left(12+4\right)}=\frac{824}{16}=\frac{206}4

Vì 3 < 206 nên \frac34<\frac{206}4 hay A < B

Bài tập tự luyện số 3

Bài 1: So sánh các cặp phân số sau:

a) 13 và 23;

b) 54 và 74;

c) 1213 và 1013;

d) 56 và 76.

Bài 2: So sánh các cặp phân số sau:

a) 1112 và 1314;

b) 715 và 524;

c) 425 và 135.

Bài 3: So sánh các cặp phân số sau:

a) 202000 và 303000;

b) 4575 và 2790.

Bài 4: Sắp xếp các phân số sau theo thứ tự tăng dần: 74341494.

Bài 5: Sắp xếp các phân số sau theo thứ tự giảm dần: 4951827253.

Bài 6: Tìm số nguyên x thỏa mãn:

a) 49 < x9 < 29;

b) 57 < x7 < 27.

Bài 7: Tìm số nguyên x thỏa mãn:

a) 1 < x12 < 56;

b) 73 > 2x3 > 3.

Bài 8: Tìm các số nguyên x,y thỏa mãn:

12 < x12 < y3 < 14.

Bài 9: Tìm số nguyên x thỏa mãn:

14 > x3 > 12.

Hướng dẫn giải

Bài 1:

a) 13 và 23

Vì 1>2 nên 13 > 23.

b) 54 và 74

+) Đưa về cùng mẫu dương:

54=54;74=74

+) So sánh:

Vì 5>7 nên 54 > 74.

Do đó:

54>74

c) 1213 và 1013

+) Đưa về cùng mẫu dương:

1013=1013

+) So sánh:

Vì 12<10 nên 1213 > 1013.

Do đó:

1213<1013

d) 56 và 76

+) Đưa về cùng mẫu dương:

76=76

+) So sánh:

Vì 5 < 7 nên 56 < 76.

Do đó:

56<76

Bài 2:

a) 1112 và 1314

+) Quy đồng về cùng mẫu dương:

Mẫu chung là: BCNN(12, 14) = 84.

1112=117127=7784

1314=136146=7884

+) So sánh:

Ta có:

7784<7884

Do đó:

1112<1314

b) 715 và 524

+) Quy đồng về cùng mẫu dương:

Mẫu chung: BCNN(15, 24) = 120.

715=(7)8158=56120

524=5(5)(24)(5)=25120

+) So sánh:

Ta có:

56120<25120

Do đó:

715<524

c) 425 và 135

+) Quy đồng về cùng mẫu dương:

Mẫu chung là: BCNN(25, 35) = 175.

425=(4)(7)(25)(7)=28175

135=15355=5175

+) So sánh:

Ta có:

28175>5175

Do đó:

425>135

Bài 3:

a) 202000 và 303000

Ta có:

202000=1100;303000=1100

Vậy:

202000=303000

(vì cả hai phân số đều bằng 1100)

b) 4575 và 2790

+) Rút gọn:

4575=(45):1575:15=35

2790=27:(9)(90):(9)=310

+) Quy đồng về cùng mẫu dương:

Mẫu chung là: BCNN(5, 10) = 10.

35=(3)252=610

+) So sánh:

Ta có:

610<310

Do đó:

35<310

Suy ra:

4575<2790

Bài 4:

94 < 74 < 14 < 34.

Bài 5:

Ta có:

49=818

518=518

2=3618

72=6318

53=3018

Mà:

3018 > 818 > 518 > 3618 > 6318.

Do đó:

53 > 49 > 518 > 2 > 72.

Bài 6:

a) x là một trong các số -3; -2; -1; 0; 1.

b) Yêu cầu đề bài đồng nghĩa với: 57 < x7 < 27.

Suy ra: x=4 hoặc x=3.

Do đó: x=4 hoặc x=3.

Bài 7:

a) 1 < x12 < 56

Yêu cầu trong đề bài tương đương với:

1212 < x12 < 1012.

Suy ra: x=11.

b) 73 > 2x3 > 3

Yêu cầu trong đề bài tương đương với:

73 > 2x3 > 93

Suy ra: 2x=8.

Do đó: x=(8):2=4.

Bài 8: Yêu cầu trong đề bài tương đương với:

612 < x12 < 4y12 < 312.

Suy ra: x=5 và 4y=4.

Do đó: x=5 và y=1.

Bài 9: Yêu cầu trong đề bài tương đương với:

312 > 4x12 > 612.

Suy ra: 4x=4 hoặc 4x=5.

Tuy nhiên, 4x chia hết cho 2 nhưng -5 lại không chia hết cho 2, nên 4x=5 không thể xảy ra. Vậy ta chỉ có 4x=4. Do đó, x=4:4=1.

Bài tập tự luyện số 4

Bài 1: Điền số thích hợp vào chỗ chấm:

a.1113<...13<...13<...13<713b.13<...36<...18<14

Hướng dẫn giải

a) Vì -11 < -10 < -9 < -8 < -7 nên 1113<1013<913<813<713

b) Quy đồng mẫu các phân số ta có:

1236<1136<1036<936

Vì -12 < -11 < -10 < -9 nên ta có:

hay 13<1136<518<14

 Bài 2:

a) Thời gian nào dài hơn: 23 h hay 34 h?

b) Đoạn thẳng nào ngắn hơn: 710m hay  34m ?

c) Khối lượng nào lớn hơn: 78 kg hay 910 ?

d) Vận tốc nào nhỏ hơn : 56 km/h hay 79 km/h ?

Hướng dẫn giải

Quy đồng mẫu.

a) Ta có: 23.h = 812.h và 34.h = 912.h, mà 912 > 812 nên 34.h > 23.h

b) Ta có: 710.m=1420.m và 34.m = 1520.m, mà 1420 < 1520 nên 710.m < 34.m

c) Ta có: 78.kg=3540.kg và 910.kg = 3640.kg, mà 35403640 nên 78.kg < 910.kg

d) Ta có: 56.km/h = 1518.km/h và 79.km/h = 1418.km/h, mà 15181418 nên 56.km/h  > 1518

Đáp số:

a) 23 h < 34 hh ;

b) 710m < 34m

c) 78 kg < 910 kg

d) 56 km/h > 79 km/h 

Bài 3: Lớp 6B có  45 số học sinh thích bóng bàn, 710 số học sinh thích bóng chuyền, 2325số học sinh thích bóng đá. Môn bóng nào được nhiều bạn học sinh lớp 6B yêu thích nhất ?

Hướng dẫn giải

Quy đồng mẫu các phân số đã cho.

Ta có  45 = 4050 , 7103550 , 2325 =4650

3550 < 4050 < 4650

⇔  710<45<2325 hay 2325 lớn nhất.

⇒ Môn bóng đá được yêu thích nhất 

Bài 4: Lưới nào sẫm nhất?

a) Đối với mỗi lưới ô vuông hình 7, hãy lập một phân số có tử số là ô đen, mẫu số là tổng số ô đen và ô trắng.

 

b) Sắp xếp các phân số này theo thứ tự tăng dần và cho biết lưới nào sẫm nhất (có tỉ số ô đen so với tổng số ô là lớn nhất.

Hướng dẫn giải

Lập các phân số rồi quy đồng mẫu các phân số vừa tìm được. Cũng có thể so sánh một số phân số đơn giản hơn với nhau rồi chọn phân số lớn nhất trong chúng để so sánh với những phân số còn lại.

a) Đối với mỗi lưới ô vuông ở hình vẽ, hãy lập một phân số có tử số là số ô xanh, mẫu là tổng số ô xanh và trắngdap-an-40

b) Sắp xếp các phân số theo thứ tự tăng dần và cho biết lưới nào sẫm nhất ?

1660<2060<2260<2460<2560=>415<26<1130<820<512

Vậy: Lưới sẫm nhất là lưới B

Bài 5: Đối với phân số ta có tính chất : Nếu ab > cdcd > pq  thì  ab > pq.

Dựa vào tính chất này, hãy so sánh:

a) 671110

b) -51727

c) 419-723-697-313

Hướng dẫn giải

a.67<1<1110=>67<1110b.517<0<27=>517<27c.419723=419723<0<697313=697313=>419723<697313

Bài 6:

Thời gian nào dài hơn: 12 giờ hay 45?

Đoạn thẳng nào ngắn hơn: 23 mét hay 35 mét?

Khối lượng nào lớn hơn: 67 kilogam hay 78 kilogam?

Hướng dẫn giải

a. Ta có: 12 giờ = 510 giờ; 45 giờ = 810 giờ

Vì 58 <810 nên 12 giờ < 45 giờ

Vậy thời gian 45 giờ dài hơn

b. Ta có: 23 mét = 1015 mét ; 35 mét = 915 mét

Vì 1015 > 915 nên 23 mét > 35 mét

Vậy đoạn thẳng 35 mét ngắn hơn

c. Ta có: 67 kilogam = 4856 kilogam; 78 kilogam = 4956 kilogam

Vì 4856 < 4956 nên 67 kg < 78 kg

Vậy khối lượng 78 kilogam lớn hơn

Bài 7: Điền số thích hợp vào chỗ trống:

a.1217<...17<...17<...17<817b.12<...24<...12<...8<13

Hướng dẫn giải

Dựa vào quy tắc so sánh hai phân số cùng mẫu ta có:

1217<1117<1017<917<817

Dựa vào quy tắc so sánh hai phân số không cùng mẫu ta có:

12<...24<.212.2<.38.3<1.83.8

=>1224<1124<1012.2<98.3<83.8

 

Vậy 12<1124<512<38<13

Bài 8: So sánh các phân số

a.524;5+1024;58b.49;6+96.9;23

Hướng dẫn giải

a. Ta có: 5+1024=1524=58

Vậy 524>5+1024=58

b. Ta có: 6+96.9=1554=518

Mà 49=818;518=518;23=1218

Vì 518<818<1218 nên 6+96.9<49<23

Bài tập tự luyện số 5

I. TRẮC NGHIỆM

Câu 1: Đáp án đúng trong các đáp án sau là:

A. 513>413

B. 12<24

C. 89>98

D. 23>1

Câu 2: Chọn đáp án sai trong các đáp án sau:

A. 15<12

B. 74<1613

C. 85>34

D. 56<78

Câu 3: Các phân số 310,415,13 được sắp xếp theo thứ tự từ bé đến lớn là:

A. 310,415,13

B. 13,310,415

C. 415,13,310

D. 415,310,13

Câu 4: Các dấu >,<,= được điền vào trong các chỗ chấm sau theo thứ tự đúng là:

59....1;    43.....1;   1....98;    77....1

A. <;<;>;=

B. >;<;<;=

C. <;>;<;=

D. >;<;=;=

Câu 5: So sánh hai phân số 56 và 38 ta được:

A. 56<38

B. 56>38

C. 56=38

D. Không so sánh được.

Câu 6: Phân số lớn nhất trong các phân số 1415;1516;1617;1718 là:

A. 1415

B. 1516

C. 1617

D. 1718

Câu 7: Phân số bé nhất trong các phân số 34;27;56;1917 là:

A. 34

B. 27

C. 56

D. 1917

Câu 8: Sắp xếp dãy các phân số  theo thứ tự giảm dần ta được:

A. 45;37;58

B. 37;  58;  45

C. 45;37;58

D. 45;58;37

II. TỰ LUẬN:

Câu 1: Điền dấu >,<,= vào ô trống

37  5724  61284  471425  141723  4578  911

Câu 2: Điền dấu >,<,= vào ô trống

34+25100  75100+143+1519  2+15193+1419  3+19143+1519  4419

Câu 3: Không quy đồng mẫu số, hãy so sánh các phân số sau:

19951996  1996199721213737  2121213737371817  13271627  152920102011  1716327326  326325

Câu 4: Viết các phân số : 1217;1915;1913;1517;1212 theo thứ tự giảm dần.

Bài tập tự luyện số 6

Bài 1: Các học sinh của lớp 6B yêu thích nhiều môn thể thao. Trong đó, 12 số học sinh của lớp thích môn bóng đá; 25 số học sinh thích môn bóng chuyền; 1120 số học sinh thích môn bóng rổ; và 310 số học sinh thích môn cầu lông. Em hãy cho biết môn thể thao nào được các học sinh lớp 6B yêu thích nhất?

Bài 2: Bạn Việt là một người rất thích đi xe đạp vào cuối tuần. Ngày thứ Bảy, bạn đi được 31 km trong 2 giờ. Ngày chủ nhật, bạn đi được 46 km trong 3 giờ. Hỏi ngày nào bạn Việt đạp xe nhanh hơn?

Bài 3: Một cửa hàng có bán ba loại mì gói với khối lượng và giá tiền mỗi gói như sau:

Tên mì HẢO HẢO CUNG ĐÌNH OMACHI
Khối lượng (g) 67 80 68
Giá tiền (đ) 8600 7000 10500

Em hãy cho biết loại mì nào rẻ nhất, loại mì nào đắt (mắc) nhất?

Bài 4: Tại một cửa hàng kia, sản phẩm nước ngọt có giá 13 nghìn đồng mỗi chai. Vào tuần lễ cuối tháng, sản phẩm này được khuyến mãi dưới hai hình thức:

  • Hình thức 1: Giảm giá 2 nghìn đồng mỗi chai;
  • Hình thức 2: Mua 2 tặng 1.

Theo em, mua hàng theo hình thức nào thì có lợi hơn về giá.

Xem thêm các dạng bài tập liên quan khác:

50 Bài tập về Phân số bằng nhau.Rút gọn phân số (có đá án năm 2023)

50 Bài tập về Phép chia phân số (Có đáp án năm 2023)

60 Bài tập về Phép cộng phân số (có đáp án năm 2023)

60 Bài tập về Phép nhân phân số (có đáp án năm 2023)

60 Bài tập về Phép trừ phân số (có đáp án năm 2023)

 

Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!