Bất phương trình bậc hai một ẩn
Lý thuyết về bất phương trình bậc hai một ẩn
1. Bất phương trình bậc hai một ẩn
– Bất phương trình bậc hai một ẩn x là bất phương trình có một trong các dạng sau: ax2 + bx + c < 0; ax2 + bx + c ≤ 0; ax2 + bx + c > 0; ax2 + bx + c ≥ 0, trong đó a, b, c là các số thực đã cho, a ≠ 0.
– Đối với bất phương trình bậc hai có dạng ax2 + bx + c < 0, mỗi số x0 ∈ ℝ sao cho được gọi là một nghiệm của bất phương trình đó.
Tập hợp các nghiệm x như thế còn được gọi là tập nghiệm của bất phương trình bậc hai đã cho.
Nghiệm và tập nghiệm của các dạng bất phương trình bậc hai ẩn x còn lại được định nghĩa tương tự.
Ví dụ 1: Cho bất phương trình bậc hai một ẩn (1). Trong các giá trị sau đây của x, giá trị nào là nghiệm của bất phương trình (1)?
a) x = 2;
b) x = 0;
c) x = 3.
Hướng dẫn giải
a) Với x = 2, ta có: 22 – 3.2 + 2 = 0. Vậy x = 2 là nghiệm của bất phương trình (1).
b) Với x = 0, ta có: 02 – 3.0 + 2 = 2 > 0.Vậy x = 0 không phải là nghiệm của bất phương trình (1).
c) Với x = 3, ta có: 32 – 3.3 + 3 > 0. Vậy x = 3 không phải là nghiệm của bất phương trình (1).
Chú ý: Giải bất phương trình bậc hai ẩn x là đi tìm tập nghiệm của bất phương trình đó.
2. Giải bất phương trình bậc hai một ẩn
2.1. Giải bất phương trình bậc hai một ẩn bằng cách xét dấu của tam thức bậc hai
Nhận xét: Để giải bất phương trình bậc hai (một ẩn) có dạng:
f(x) > 0 (f(x) = ax2 + bx + c), ta chuyển việc giải bất phương trình đó về việc tìm tập hợp những giá trị của x sao cho f(x) mang dấu “+”. Cụ thể, ta làm như sau:
Bước 1. Xác định dấu của hệ số a và tìm nghiệm của f(x) (nếu có).
Bước 2. Sử dụng định lí về dấu của tam thức bậc hai để tìm tập hợp những giá trị của x sao cho f(x) mang dấu “+”.
Chú ý: Các bất phương trình bậc hai có dạng f(x) < 0, f(x) ≥ 0, f(x) ≤ 0 được giải bằng cách tương tự.
Ví dụ: Giải các bất phương trình bậc hai sau:
a) ;
b) .
Hướng dẫn giải
a) Tam thức bậc hai có hai nghiệm phân biệt , và có hệ số a = 1 > 0. Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức mang dấu “+” là
Vậy tập nghiệm của bất phương trình là
b) Tam thức bậc hai có hai nghiệm , và có hệ số .
Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức mang dấu “+” là (– 4; 1).
Vậy tập nghiệm của bất phương trình – x2 – 3x + 4 > 0 là (4; 1).
2.2. Giải bất phương trình bậc hai một ẩn bằng cách sử dụng đồ thị
– Giải bất phương trình bậc hai ax2 + bx + c > 0 là tìm tập hợp những giá trị của x ứng với phần parabol y = ax2 + bx + c nằm phía trên trục hoành.
– Tương tự, giải bất phương trình bậc hai ax2 + bx + c < 0 là tìm tập hợp những giá trị của x ứng với phần parabol y = ax2 + bx + c nằm phía dưới trục hoành.
Như vậy, để giải bất phương trình bậc hai (một ẩn) có dạng:
f(x) > 0 (f(x) = ax2 + bx + c) bằng cách sử dụng đồ thị, ta có thể làm như sau: Dựa vào parabol y = ax2 + bx + c, ta tìm tập hợp những giá trị của x ứng với phần parabol đó nằm phía trên trục hoành. Đối vổi các bất phương trình bậc hai có dạng f(x) < 0, f(x) ≥ 0, ,f(x) ≤ 0, ta cũng làm tương tự.
Ví dụ: Quan sát đồ thị và giải các bất phương trình bậc hai sau:
a)
b) > 0
Đồ thị y = Đồ thị y =
Hướng dẫn giải
a) Quan sát đồ thị, ta thấy biểu diễn phần parabol y = nằm phía dưới trục hoành, tương ứng với 1 < x < 2.
Vậy tập nghiệm của bất phương trình là khoảng (1; 2).
b) Quan sát đồ thị, ta thấy > 0 biểu diễn phần parabol y = nằm phía trên trục hoành, tương ứng với 0 < x < 2.
Vậy tập nghiệm của bất phương trình > 0 là khoảng (0 ; 2).
2.3. Ứng dụng của bất phương trình bậc hai một ẩn
Bất phương trình bậc hai một ẩn có nhiều ứng dụng, chẳng hạn: giải một số hệ bất phương trình; ứng dụng vào tính toán lợi nhuận trong kinh doanh; tính toán điểm rơi trong pháo binh;...
Chúng ta sẽ làm quen với những ứng dụng đó qua một số ví dụ sau đây.
Ví dụ 4: Tìm giao các tập nghiệm của hai bất phương trình sau:
(3) và (4)
Hướng dẫn giải
Ta có: Tập nghiệm của bất phương trình (3) là S3= (−3 ; 1);
Tập nghiệm của bất phương trình (4) là S4= (1 ; 3).
Giao các tập nghiệm của hai bất phương trình trên là:
.
Bài tập tự luyện (có đáp án)
1. Bài tập tự luận
Bài 1. Tìm tổng các nghiệm nguyên của bất phương trình: trên đoạn .
Hướng dẫn giải
Bất phương trình:
.
Tổng tất cả các nghiệm là: 6 + 7 + 8 + 9 + 10 = 40.
Bài 2. Tìm tập nghiệm của bất phương trình: .
Hướng dẫn giải
Ta có: .
Bảng xét dấu
Dựa vào bảng xét dấu .
Bài 3: Tìm tất cả các nghiệm nguyên của bất phương trình
Lời giải:
Xét .
.
Ta có bảng xét dấu:
x | |
f(x) | + 0 - 0 + |
Tập nghiệm của bất phương trình là .
Do đó bất phương trình có 6 nghiệm nguyên là: -2; -1; 0; 1; 2; 3.
Bài 4: Xét dấu biểu thức: .
Lời giải:
Ta có f(x) có hai nghiệm phân biệt x = -2, x = 2 và hệ số a = 1 > 0 nên:
f(x) < 0 khi ; f(x) > 0 khi .
Bài 5: Xét dấu biểu thức: .
Lời giải:
. Ta có bảng xét dấu:
x | 2 |
+ 0 + |
Vậy f(x) > 0 với .
Bài 6: Giải bất phương trình
Lời giải:
Bất phương trình
Xét phương trình
Lập bảng xét dấu:
x | 1 4 |
+ 0 - 0 + |
Dựa vào bảng xét dấu, ta thấy
Bài 7: Có bao nhiêu giá trị nguyên dương của x thỏa mãn ?
Lời giải:
Điều kiện:
Bất phương trình:
Bảng xét dấu:
x | -2 2 |
2x+9 | - 0 + + + |
+ + 0 - 0 + | |
f(x) | - 0 + - + |
Dựa vào bảng xét dấu, ta thấy
Vậy chỉ có duy nhất một giá trị nguyên dương của x (x = 1) thỏa mãn yêu cầu.
Bài 8: Tìm các giá trị của m để biểu thức .
Lời giải:
Ta có:
.
Bài 9: Tìm tất cả các giá trị thực của tham số m để bất phương trình: (1) có tập nghiệm S=R ?
Lời giải:
+) Trường hợp 1:
Bất phương trình (1) trở thành ( Luôn đúng) (*)
+) Trường hợp 2:
Bất phương trình (1) có tập nghiệm S=R
Từ (*) và (**) ta suy ra với thì bất phương trình có tập nghiệm S=R.
Bài 10: Tìm tất cả các giá trị của tham số m để tam thức bậc hai f(x) sau đây thỏa mãn , .
Lời giải:
Vì tam thức bậc hai f(x) có hệ số a = -1 < 0 nên khi và chỉ khi .
Bài 11: Bất phương trình có bao nhiêu nghiệm nguyên thuộc khoảng (0; 7)?
Lời giải:
Ta có:
Kết hợp điều kiện: , suy ra .
Vậy bất phương trình có 4 nghiệm nguyên thuộc khoảng (0; 7).
Bài 12: Tìm tập nghiệm của bất phương trình .
Lời giải:
Vậy tập nghiệm của bất phương trình đã cho là .
2. Bài tập trắc nghiệm
Câu 1. Số thực dương x lớn nhất thỏa mãn là?
A. 1;
B. 2;
C. 3;
D. 4.
Hướng dẫn giải
Đáp án đúng là: D
Ta có .
Bảng xét dấu
Dựa vào bảng xét dấu . Suy ra số thực dương x lớn nhất thỏa là 4.
Câu 2. Tập nghiệm của bất phương trình: là:
A. ;
B. ;
C. ;
D. .
Hướng dẫn giải
Đáp án đúng là: B
Ta có: f(x) = .
Bảng xét dấu
Dựa vào bảng xét dấu
Câu 3. Giải bất phương trình
A.
B.
C.
D.
Hướng dẫn giải
Đáp án đúng là: C
Bất phương trình
Xét phương trình
Lập bảng xét dấu
|
|
|
|
|
|
|
|
|
|
|
0 |
|
0 |
|
|
Dựa vào bảng xét dấu, ta thấy
Xem thêm các dạng bài tập liên quan khác:
200 Bài tập Bất phương trình bậc nhất hai ẩn (có đáp án năm 2023)
100 Bài tập hệ bất phương trình bậc nhất hai ẩn (có đáp án năm 2023)
500 Bài tập bất phương trình và hệ phương trình bậc nhất hai ẩn (có đáp án năm 2023)
60 Bài tập về Bất phương trình mũ và bất phương trình logarit (2024) có đáp án
300 Bài tập: Bất phương trình bậc nhất một ẩn (có đáp án năm 2023)