60 Bài tập về Bất phương trình mũ và bất phương trình logarit (2024) có đáp án - Toán 12

1900.edu.vn xin giới thiệu: Tổng hợp các dạng bài tập về Bất phương trình mũ và bất phương trình logarit Toán 12. Đây sẽ là tài liệu tham khảo hữu ích, giúp các bạn học sinh ôn tập và củng cố kiến thức đã học, tự luyện tập nhằm học tốt môn Toán 12, giải bài tập Toán 12 tốt hơn. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây.

Tổng hợp các dạng bài tập về

Bất phương trình mũ và bất phương trình logarit

(Toán 12)

 Lý thuyết và phương pháp giải

1. Bất phương trình mũ

a. Bất phương trình mũ cơ bản

Bất phương trình mũ cơ bản có dạng ax > b ( hoặc ax < b; axb; axb) với a > 0 và a ≠ 1.

Ta xét bất phương trình ax > b

+ Nếu b ≤ 0 tập nghiệm của bất phương trình là  vì ax > 0b  ;  x

+ Nếu b > 0 thì tập nghiệm của bất phương trình tương đương ax  >alogab.

Với a > 1, tập nghiệm của bất phương trình là x > logab.

Với 0 <  a < 1, tập nghiệm của bất phương trình là x < logab.

– Ví dụ 1.

a) 5x  >  125x > log5125x >  3.

b) 13x  >27x<log1327x<  3

Kết luận. Tập nghiệm của bất phương trình ax > b được cho trong bảng sau:

Lý thuyết Bất phương trình mũ và bất phương trình logarit chi tiết – Toán lớp 12 (ảnh 1)

b. Cách giải một số phương trình mũ đơn giản

* Đưa về cùng cơ số

Ví dụ: Giải phương trình (12)2x1=23x

Ta có:

(12)2x1=23x22x+1=23x2x+1=3x1=5xx=15

* Đặt ẩn phụ

Ví dụ: Giải phương trình 4x2x+1+1=0.

Ta có:

4x2x+1+1=0(2x)22.2x+1=0

Đặt t=2x>0 ta được:

t22t+1=0(t1)2=0t1=0t=1

2x=1x=log21x=0

* Logarit hóa

Ví dụ: Giải phương trình 3x.2x2=1.

Logarit hai vế cơ số 3 ta được:

log3(3x.2x2)=log31log33x+log32x2=0x+x2log32=0x(1+xlog32)=0[x=01+xlog32=0[x=0x=1log32=log23

*  Đưa về phương trình tích.

Phương pháp:

- Bước 1: Tìm điều kiện xác định (nếu có)

- Bước 2: Biến đổi phương trình về dạng tích AB=0[A=0B=0

- Bước 3: Giải các phương trình A=0,B=0 tìm nghiệm.

- Bước 4: Kiểm tra điều kiện và kết luận nghiệm.

* Sử dụng bất đẳng thức, tính đơn điệu của hàm số.

Phương pháp:

- Bước 1: Tìm điều kiện xác định.

- Bước 2: Có thể làm một trong hai cách sau:

Cách 1: Biến đổi phương trình sao cho một vế là hàm số đơn điệu, một vế là hằng số hoặc một vế là hàm đồng biến và vế còn lại là hàm số nghịch biến.

Cách 2: Biến đổi phương trình về dạng f(u)=f(v) với f là hàm số đơn điệu.

- Bước 3: Nhẩm một nghiệm của phương trình trên.

- Bước 4: Kết luận nghiệm duy nhất của phương trình.

2. Bất phương trình logarit

a. Bất phương trình logarit cơ bản

Bất phương trình logarit cơ bản có dạng loga x > b (hoặc logax < 0; logax0;logax0) với a > 0; a ≠ 1.

Xét bất phương trình logax > b

+ Trường hợp a > 1 ta có: logax > bx > ab.

+ Trường hợp 0 < a < 1 ta có: logax > b0 < x < ab.

– Ví dụ 3.

a) log2x > 7x > 27.

b) log25x  <  3x​  >  253

Kết luận: Nghiệm của bất phương trình logax > b được cho trong bảng sau:

Lý thuyết Bất phương trình mũ và bất phương trình logarit chi tiết – Toán lớp 12 (ảnh 1)

b.  Cách giải một số phương trình logarit

* Đưa về cùng cơ số

Ví dụ: Giải phương trình log2x+log4x=1

Ta có:

log2x+log4x=1log2x+12log2x=132log2x=1log2x=23x=223x=43

*  Đặt ẩn phụ

Ví dụ: Giải phương trình 1lnx+1lnx1=56.

ĐK: {x>0lnx0lnx1{x>0x1xe

Đặt t=lnx(t0,t1) ta được:

1t+1t1=566t6+6t6t(t1)=5t(t1)6t(t1)12t6=5t25t5t217t+6=0[t=3t=25(TM)[lnx=3lnx=25[x=e3x=e25(TM)

Vậy phương trình có tập nghiệm S={e3;e25}.

* Mũ hóa

Ví dụ: Giải phương trình log3(33x)=1+x

ĐK: 33x>03x<3x<1

Ta có:

log3(33x)=1+x33x=31+x33x=3.3x3=4.3x3x=34x=log334x=1log34(TM)

* Đưa về phương trình tích

Phương pháp:

- Bước 1: Tìm điều kiện xác định (nếu có)

- Bước 2: Biến đổi phương trình về dạng tích AB=0[A=0B=0

- Bước 3: Giải các phương trình A=0,B=0 tìm nghiệm.

- Bước 4: Kiểm tra điều kiện và kết luận nghiệm.

* Sử dụng bất đẳng thức, tính đơn điệu của hàm số.

Phương pháp:

- Bước 1: Tìm điều kiện xác định.

- Bước 2: Có thể làm một trong hai cách sau:

Cách 1: Biến đổi phương trình sao cho một vế là hàm số đơn điệu, một vế là hằng số hoặc một vế là hàm đồng biến và vế còn lại là hàm số nghịch biến.

Cách 2: Biến đổi phương trình về dạng f(u)=f(v) với f là hàm số đơn điệu.

- Bước 3: Nhẩm một nghiệm của phương trình trên.

- Bước 4: Kết luận nghiệm duy nhất của phương trình.

Các dạng bài tập về bất phương trình mũ và bất phương trình logarit

(Xem trong file pdf)

Dạng 1. Phương pháp biến đổi tương đương đưa về cùng cơ số.

Dạng 2. Phương pháp đặt ẩn phụ.

Dạng 3. Phương pháp logarit hóa.

Dạng 4. Phương pháp sử dụng tính đơn điệu.

Bài tập vận dụng (có đáp án)

Bài 1: Tìm tập nghiệm của bất phương trình log(x - 21) < 2 - logx

Lời giải:

Điều kiện x > 21. Khi đó:

log(x - 21) < 2 - logx ⇔ log(x - 21) + logx < 2

⇒ log[x(x - 21)] < 2 ⇒ x(x - 21) < 102

⇔ x2 - 21x - 100 < 0

⇔ -4 < x < 25

Kết hợp điều kiện x > 21, ta được 21 < x < 25.

Nhận xét. Nhiều bài toán quen thuộc như tìm miền xác định của hàm số, xét tính đơn điệu, cực trị,… có thể dẫn đến việc phải giải các bất phương trình mũ, lôgarit. Dưới đây là một số ví dụ.

Bài 2: Tìm miền xác định của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Hàm số xác định khi

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 3: Tìm các khoảng đồng biến của hàm số y = x2lnx

Lời giải:

Tập xác định: D = (0; +∞)

y' = 2xlnx + x2.1x = x(2lns + 1).

Ta thấy:

y' > 0 ⇔ x(2lnx + 1) > 0 ⇔ 2lnx + 1 > 0 (vì x > 0)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ đó khoảng đồng biến của hàm số là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 4: Một tàu vũ trụ được cung cấp bởi một nguồn điện đồng vị phóng xạ plutoni-238. Công suất đầu ra của nguồn điện này được ước lượng bởi

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

trong đó t là số năm kể từ khi con tàu hoạt động. Biết rằng để các thiết bị trên tàu hoạt động bình thường, nguồn cần cung cấp công suất tối thiểu là 600W. Hỏi con tàu đủ điện để các thiết bị hoạt động bình thường trong thời gian bao lâu ?

Lời giải:

Con tàu hoạt động bình thường khi

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 5: Dân số Việt Nam năm 2015 là 91,71 triệu người. Giả sử trong 5 năm tỉ lệ tăng dân số là không đổi. Hỏi tỉ lệ này có thể nhận giá trị tối đa là bao nhiêu để dân số Việt Nam năm 2020 không vượt quá 96,5 triệu người (làm tròn kết quả đến phần chục nghìn) ?

Lời giải:

Giả sử tỉ lệ tăng dân số trong 5 năm đó từ 2015 đến 2020 là k không đổi. Điều kiện của đầu bài là :

91,71.e5k ≤ 96,5

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy tỉ lệ tăng dân số tối đa là 1,02%.

Bài 6: Giá trị của một chiếc xe ô tô sau t năm được ước lượng bằng công thức G(t) = 600e-0,12t (triệu đồng). Để bán lại xe với giá trừ 200 triệu đến 300 triệu đồng, người chủ phải bán trong khoảng thời gian nào kể từ khi mua (làm tròn kết quả đến hàng phần mười của năm)?

Lời giải:

Yêu cầu đề bài : 200 ≤ 600e-0,12t ≤ 300

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 7: Giải bất phương trình Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 8: Tìm tập nghiệm của bất phương trình

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 9: Miền xác định của hàm số y = log2004(log2003(log2002(log2001x))) là khoảng (c; +∞) . Xác định giá trị của c.

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 10: Có bao nhiêu số nguyên dương n thỏa mãn điều kiện (130n)50 > n100 > 2200 ?

Lời giải:

Lấy căn bậc 50 mỗi vế của bất phương trình ta nhận được

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ đó có 125 số nguyên dương n thỏa mãn điều kiện đã cho

Bài 11: Giải bất phương trình 54x - 6 > 33x - 4

Lời giải:

Lấy lôgarit theo cơ số 5 hai vế của bất phương trình, ta được :

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập tự luyện (có hướng dẫn)

(Xem trong file pdf)

Xem thêm các dạng bài tập Toán chi tiết và hay khác:

60 Bài tập về Bất phương trình mũ và bất phương trình logarit (2024) có đáp án - Toán 12 (trang 1)
Trang 1
60 Bài tập về Bất phương trình mũ và bất phương trình logarit (2024) có đáp án - Toán 12 (trang 2)
Trang 2
60 Bài tập về Bất phương trình mũ và bất phương trình logarit (2024) có đáp án - Toán 12 (trang 3)
Trang 3
60 Bài tập về Bất phương trình mũ và bất phương trình logarit (2024) có đáp án - Toán 12 (trang 4)
Trang 4
60 Bài tập về Bất phương trình mũ và bất phương trình logarit (2024) có đáp án - Toán 12 (trang 5)
Trang 5
60 Bài tập về Bất phương trình mũ và bất phương trình logarit (2024) có đáp án - Toán 12 (trang 6)
Trang 6
60 Bài tập về Bất phương trình mũ và bất phương trình logarit (2024) có đáp án - Toán 12 (trang 7)
Trang 7
60 Bài tập về Bất phương trình mũ và bất phương trình logarit (2024) có đáp án - Toán 12 (trang 8)
Trang 8
Để xem toàn bộ tài liệu, vui lòng tải xuống
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!