Bài tập Lượng giác từ đề thi Đại học cơ bản, nâng cao có lời giải chi tiết

Bài tập Lượng giác từ đề thi Đại học cơ bản, nâng cao (P1)

  • 229 lượt thi

  • 30 câu hỏi

  • 0 phút

Danh sách câu hỏi

Câu 26:

Tính tổng các nghiệm trong đoạn 0;30 của phương trình tanx=tan3x (1)

Xem đáp án

Điều kiện để phương trình (1) có nghĩa:

\(\left\{ \begin{array}{l}{\rm{cosx}} \ne {\rm{0}}\\{\rm{cos3x}} \ne {\rm{0}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{2} + k\pi \\x \ne \frac{\pi }{6} + \frac{{k\pi }}{3}\end{array} \right.,k \in \mathbb{Z}\)

Khi đó phương trình (1) trở thành:

\(3x = x + k\pi ,k \in \mathbb{Z}\)

\( \Leftrightarrow x = \frac{{k\pi }}{2},k \in \mathbb{Z}\)

So sánh với điều kiện:

\( \Rightarrow x = k\pi ,k \in \mathbb{Z}\)

Mà \(x \in \left[ {0;30} \right]\) nên \(0 \le k\pi  \le 30 \Rightarrow k \in \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\)

Các nghiệm của phương trình trong khoảng trên là: \(x \in \left\{ {0;\pi ;2\pi ;3\pi ;...;9\pi } \right\}\)

Vậy tổng các nghiệm của phương trình là: \(0 + \pi  + 2\pi  + 3\pi  + ... + 9\pi  = 45\pi .\)

Chọn C


Bắt đầu thi ngay