Cho tam giác ABC, đường cao AH. Gọi M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN

Bài 3.27 trang 66 Toán 8 Tập 1: Cho tam giác ABC, đường cao AH. Gọi M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN. Chứng minh tứ giác AHCN là hình chữ nhật.

Trả lời

Bài 3.27 trang 66 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Theo đề bài, M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN.

Nên tứ giác ANCH có hai đường chéo AC và HN cắt nhau tại trung điểm M của mỗi đường.

Suy ra tứ giác ANCH là hình bình hành.

Hình bình hành ANCH có AHC^=90° nên tứ giác ANCH là hình chữ nhật.

Xem thêm các bài giải SGK Toán 8 Kết nối tri thức hay, chi tiết khác:

Bài 12: Hình bình hành

Luyện tập chung

Bài 13: Hình chữ nhật

Bài 14: Hình thoi và hình vuông

Luyện tập chung

Bài tập cuối chương 3

 

Câu hỏi cùng chủ đề

Xem tất cả