Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và một điểm M di động trên cạnh AD
3.1k
16/06/2023
Bài 3 trang 112 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và một điểm M di động trên cạnh AD. Một mặt phẳng (α) qua M, song song với CD và SA, cắt BC, SC, SD lần lượt N, P, Q.
a) MNPQ là hình gì?
b) Gọi I = MQ ∩ NP. Chứng minh rằng I luôn luôn thuộc một đường thẳng cố định khi M di động trên AD.
Trả lời
a) Trong mặt phẳng (ABCD), từ M kẻ đường thẳng song song CD cắt BC tại N.
Gọi K là giao điểm của MN và AC.
Trong mặt phẳng (SAC), từ K kẻ đường thẳng song song với SA cắt SC tại P.
Trong mặt phẳng (SCD), từ P kẻ đường thẳng song song với CD cắt SD ở Q.
Mặt phẳng (MNPQ) chính là mặt phẳng (α) cần dựng.
b) Gọi d là giao tuyến của (SAD) ∩ (SBC)
Ta có:
Mà S ∈ (SAD) ∩ (SBC) nên S ∈ d
Ta lại có:
Do đó I ∈ d
Vì vậy I thuộc đường thẳng d cố định đi qua S và song song với AD.
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian
Bài 2: Hai đường thẳng song song
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song
Bài 5: Phép chiếu song song
Bài tập cuối chương 4