Giải Toán 10 Bài 2: Hệ bất phương trình bậc nhất hai ẩn
Câu hỏi khởi động
Trong toán học, các điều kiện ràng buộc đối với x và y để đáp ứng nhu cầu trên của công ty được thể hiện như thế nào?
Lời giải:
Sau bài học này ta sẽ giải bài toán đặt ra trên như sau:
Gọi x, y lần lượt là số lần phát quảng cáo vào khoảng 20h30 và vào khung giờ 16h00 – 17h00 ()
Vì công ty yêu cầu quảng cáo với số lần phát như sau: ít nhất 10 lần quảng cáo vào khoảng 20h30 và không quá 50 lần quảng cáo vào khung giờ 16h00 – 17h00 nên x ≥ 10 và 0 ≤ y ≤ 50.
Chi phí cho x lần phát quảng cáo vào khung giờ khoảng 20h30 là: 30x (triệu đồng).
Chi phí cho y lần phát quảng cáo vào khung giờ 16h00 – 17h00 là 6y (triệu đồng).
Tổng chi phí công ty phát quảng cáo trên VTV1 là: 30x + 6y (triệu đồng).
Vì công ty dự định chi không quá 900 triệu đồng để quảng cáo nên 30x + 6y ≤ 900
⇔ 5x + y ≤ 150.
Vậy các điều kiện ràng buộc đối với x và y để đáp ứng nhu cầu của công ty là: x ≥ 10, 0 ≤ y ≤ 50, 5x + y ≤ 150 và .
1. Hệ bất phương trình bậc nhất hai ẩn
Hoạt động 1 trang 25 Toán lớp 10 Tập 1: Cho hệ bất phương trình sau:
a) Mỗi bất phương trình (1) và (2) có là bất phương trình bậc nhất hai ẩn không?
b) Chỉ ra một nghiệm chung của hai bất phương trình (1) và (2) trong hệ trên.
Lời giải:
a) Bất phương trình (1) là bất phương trình bậc nhất một ẩn vì bất phương trình này có dạng ax + by < c (a và b không đồng thời bằng 0, với a = 1, b = – 1, c = 3).
Bất phương trình (2) là bất phương trình bậc nhất một ẩn vì bất phương trình này có dạng ax + by > c (a và b không đồng thời bằng 0, với a = 1, b = 2, c = – 2)
Vậy mỗi bất phương trình (1) và (2) đều là bất phương trình bậc nhất hai ẩn x và y.
b) Ta cần chọn một cặp (x0; y0) thỏa mãn cả hai bất phương trình (1) và (2). Chọn x0 = - 1, y0 = 0. Khi đó:
Thay x = -1 và y = 0 vào bất phương trình (1) ta được: -1 – 0 < 3 ⇔ 0 < 3 (luôn đúng) nên (-1; 0) là nghiệm của bất phương trình (1).
Thay x = -1 và y = 0 vào bất phương trình (2) ta được: -1 + 2.0 > – 2 ⇔ -1 > – 2 (luôn đúng) nên (-1; 0) là nghiệm của bất phương trình (2).
Vậy cặp số (-1; 0) là một nghiệm chung của hai bất phương trình (1) và (2) trong hệ trên.
Luyện tập 1 trang 25 Toán lớp 10 Tập 1: Chỉ ra một nghiệm của hệ bất phương trình sau:
Lời giải:
Chọn cặp số (2; 0) là nghiệm của hệ bất phương trình trên, thật vậy:
Thay x = 2 và y = 0 vào bất phương trình 2x + y > 0 ta được: 2 . 2 + 0 = 4 + 0 = 4 > 0 là mệnh đề đúng nên (2; 0) là nghiệm của bất phương trình này.
Thay x = 2 và y = 0 vào bất phương trình x – 3y < 6 ta được: 2 – 3 . 0 = 2 – 0 = 2 < 6 là mệnh đề đúng nên (2; 0) là nghiệm của bất phương trình này.
Thay x = 2 và y = 0 vào bất phương trình x – y ≥ -4 ta được: 2 – 0 = 2 > – 4 nên (2; 0) là nghiệm của bất phương trình x – y ≥ 4.
Do đó (2; 0) là nghiệm chung của ba bất phương trình trong hệ đã cho.
Vậy cặp số (2; 0) là một nghiệm của hệ bất phương trình đã cho.
2. Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn
Hoạt động 2 trang 26 Toán lớp 10 Tập 1: Cho hệ bất phương trình sau:
b) Tìm miền nghiệm của hệ bất phương trình đã cho.
Lời giải:
a) Trong cùng một mặt phẳng tọa độ Oxy, vẽ ba đường thẳng:
d1: x – 2y = – 2 ⇔ y = x + 1
Ta có bảng sau:
x |
0 |
2 |
y = x + 1 |
1 |
2 |
Đường thẳng d1 đi qua 2 điểm (0; 1) và (2; 2).
+ Lấy O(0; 0). Ta có: 0 - 2.0 = 0 > -2.
+ Vậy miền nghiệm của bất phương trình x – 2y ≥ - 2 là nửa mặt phẳng không bị gạch ở hình trên chứa điểm O(0; 0) kể đường thẳng d1.
d2: 7x – 4y = 16 ⇔ y = x – 4
Ta có bảng sau:
x |
0 |
4 |
y = x – 4 |
-4 |
3 |
Đường thẳng d2 đi qua 2 điểm (4; 3) và (0; – 4)
+ Lấy O(0; 0). Ta có: 7.0 - 4.0 = 0 < 16.
+ Vậy miền nghiệm của bất phương trình 7x – 4y ≤ 16 là nửa mặt phẳng không bị gạch ở hình trên chứa điểm O(0; 0) kể đường thẳng d2.
d3: 2x + y = – 4 ⇔ y = 2x + 4
Ta có bảng sau:
x |
0 |
-2 |
y = - 2x - 4 |
- 4 |
0 |
Đường thẳng d3 đi qua hai điểm (0; -4) và (– 2; 0)
+ Lấy O(0; 0). Ta có: 2.0 + 0 = 0 > -4.
+ Vậy miền nghiệm của bất phương trình x + 2y ≥ -4 là nửa mặt phẳng không bị gạch ở hình trên chứa điểm O(0; 0) kể đường thẳng d3.
Khi đó ta có hình vẽ sau:
b) Phần không bị gạch (chứa điểm O(0; 0)) là miền nghiệm của hệ bất phương trình đã cho.
Cụ thể, miền nghiệm của hệ là tam giác ABC kể cả miền trong (còn gọi là miền tam giác ABC) với A(4; 3), B(0; – 4) và C(– 2; 0).
3. Áp dụng vào bài toán thực tiễn
Luyện tập 2 trang 27 Toán lớp 10 Tập 1: Biểu diễn miền nghiệm của hệ bất phương trình sau:
Lời giải:
Trên cùng một mặt phẳng tọa độ Oxy, vẽ 3 đường thẳng:
+) d1: 3x – y = – 3
Đường thẳng d1 qua hai điểm có tọa độ (0;3) và (-1;0).
+) d2: – 2x + 3y = 6
Đường thẳng d2 qua hai điểm có tọa độ (0;2) và (-3;0).
+) d3: 2x + y = – 4.
Đường thẳng d3 qua hai điểm có tọa độ (0;-4) và (-2;0).
Do tọa độ điểm O(0;0) thỏa mãn các bất phương trình trong hệ nên miền nghiệm của từng bất phương trình trong hệ lần lượt là những nửa mặt phẳng không bị gạch chứa điểm O(0;0) (không kể đường thẳng tương ứng).
Miền nghiệm của hệ bất phương trình là phần mặt phẳng không bị gạch sọc không kể đường biên trong hình dưới.
Bài tập
a) (0; 2), (1; 0);
b) (– 1; – 3), (0; – 3).
Lời giải:
a) Ta có:
+ Thay x = 0, y = 2 vào hai bất phương trình (1) và (2) của hệ đã cho, ta có:
(1) 3 . 0 + 2 . 2 ≥ – 6 ⇔ 4 ≥ -6 (luôn đúng).
Và (2) 0 + 4 . 2 > 4 ⇔ 8 > 4 (luôn đúng).
Suy ra (0; 2) là nghiệm chung của hai bất phương trình trong hệ bất phương trình nên (0; 2) là nghiệm của hệ bất phương trình.
+ Thay x = 1, y = 0 vào từng bất phương trình của hệ đã cho ta có:
(1) 3 . 1 + 2 . 0 ≥ – 6 ⇔ 3 ≥ -6 (luôn đúng).
(2) 1 + 4 . 0 > 4 ⇔ 1 > 4 (vô lí).
Suy ra (1; 0) không là nghiệm của hệ bất phương trình.
Vậy cặp số (0; 2) là nghiệm của hệ bất phương trình và cặp số (1; 0) không là nghiệm của hệ bất phương trình.
b)
Ta có:
+ Thay x = – 1, y = – 3 vào từng bất phương trình của hệ, ta có:
(3) ⇔ 4 . (– 1) + (– 3) ≤ – 3 ⇔ – 7 ≤ – 3 (luôn đúng);
(4) ⇔ (– 3) . (– 1) + 5 . (– 3) ≥ – 12 ⇔ – 12 ≥ – 12 (luôn đúng).
Suy ra (– 1; – 3) là nghiệm chung của hai bất phương trình trong hệ bất phương trình nên (– 1; – 3) là nghiệm của hệ bất phương trình.
+ Thay x = 0, y = – 3 vào từng bất phương trình của hệ đã cho ta có:
(3) ⇔ 4 . 0 + (– 3) ≤ – 3 ⇔ – 3 ≤ – 3 (luôn đúng);
(4) ⇔ (– 3) . 0 + 5 . (– 3) ≥ – 12 ⇔ – 15 ≥ – 12 (vô lý).
Suy ra (0; – 3) không là nghiệm của hệ bất phương trình.
Vậy (– 1; – 3) là nghiệm của hệ bất phương trình và (0; – 3) không là nghiệm của hệ bất phương trình.
Bài 2 trang 29 Toán lớp 10 Tập 1: Biểu diễn miền nghiệm của hệ bất phương trình:
Lời giải:
a)
+ Trên cùng một mặt phẳng tọa độ Oxy, vẽ các đường thẳng:
d1: x + 2y = – 4 là đường thẳng đi qua các điểm có tọa độ (0; -2) và (-4;0).
d2: – x + y = 5 là đường thẳng đi qua các điểm có tọa độ (0; 5) và (-5; 0).
Do tọa độ điểm O(0;0) không thỏa mãn các bất phương trình trong hệ nên miền nghiệm của từng bất phương trình trong hệ lần lượt là những nửa mặt phẳng không bị gạch không chứa điểm O(0;0) (không kể đường thẳng d1 và kể cả đường thẳng d2).
Miền nghiệm của hệ bất phương trình là phần mặt phẳng không bị gạch sọc kể cả đường biên d2 và không kể đường biên d1 như trong hình dưới.
b)
+ Trên cùng một mặt phẳng tọa độ Oxy, vẽ các đường thẳng:
d1: 4x – 2y = 8 là đường thẳng đi qua các điểm có tọa độ (0; -4) và (2;0).
d2: x = 0 là trục tung;
d3: y = 0 là trục hoành.
Lấy điểm M có tọa độ (-2;2) ta thấy M(-2;2) không thỏa mãn các bất phương trình trong hệ nên miền nghiệm của từng bất phương trình trong hệ lần lượt là những nửa mặt phẳng không bị gạch không chứa điểm M(-2;2) (kể cả hai trục tọa độ Ox, Oy và không kể đường thẳng d1).
Miền nghiệm của hệ bất phương trình là phần không gạch sọc trên hình bao gồm một phần trục tung, trục hoành và không bao gồm đường thẳng d1.
a)
b)
c)
Lời giải:
* Quan sát Hình 12a, đặt tên các đường thẳng như trên hình:
+ Đường thẳng d1 đi qua điểm (2; 0) và song song với trục tung, do đó phương trình đường thẳng d1: x = 2.
+ Đường thẳng d2 đi qua điểm (1; 0) và song song với trục hoành, do đó phương trình đường thẳng d2: y = 1.
+ Giả sử d3: y = ax + b (a ≠ 0)
Ta thấy đường thẳng d3 đi qua 2 điểm (0; 1) và (1; 0). Thay tọa độ của mỗi điểm vào phương trình ta được: b = 1 và a + b = 0. Suy ra a = – 1 (t/m) và b = 1.
Khi đó, d3: y = – x + 1.
Do đó, ta thấy phần không gạch sọc trên hình chính là miền nghiệm của hệ c)
* Quan sát Hình 12b, đặt tên các đường thẳng như hình:
+ Đường thẳng d4 đi qua điểm (– 3; 0) và song song với trục tung nên d4: x = – 3.
+ Đường thẳng d5 đi qua điểm (0; – 1) và song song với trục hoành nên d5: y = – 1.
+ Đường thẳng d6 đi qua hai điểm (2; 0) và (0; 2).
Giả sử d6: y = ax + b (a ≠ 0)
Thay tọa độ các điểm (2; 0) và (0; 2) vào phương trình đường thẳng ta tìm được a = – 1 (t/m) và b = 2.
Khi đó, d6: y = – x + 2 ⇔ x + y = 2.
Do đó, ta thấy phần không gạch sọc trên hình chính là miền nghiệm của hệ a)
Vậy Hình 12a) biểu diễn cho miền nghiệm của hệ bất phương trình c) và Hình 12b) biểu diễn cho miền nghiệm của hệ bất phương trình a).
Lời giải:
Gọi số lượng mũ kiểu thứ nhất và kiểu thứ hai trong một ngày mà phân xưởng cần sản xuất để tiền lãi thu được cao nhất lần lượt là x (chiếc) và y (chiếc) (Điều kiện: )
Trong một ngày thị trường tiêu thụ tối đa 200 chiếc mũ kiểu thứ nhất và 240 chiếc mũ kiểu thứ hai nên ta có: 0 ≤ x ≤ 200; 0 ≤ y ≤ 240.
Tiền lãi khi bán một chiếc mũ kiểu thứ nhất là 24 nghìn và một chiếc mũ kiểu thứ hai là 15 nghìn nên tổng số tiền lãi khi bán mũ là T = 24x + 15y.
Nếu chỉ sản xuất toàn kiểu mũ thứ hai thì trong một giờ phân xưởng làm được 60 chiếc nên thời gian để làm một chiếc mũ kiểu thứ hai là (giờ).
Thời gian làm ra một chiếc kiểu mũ thứ nhất nhiều gấp hai lần thời gian làm ra một chiếc mũ kiểu thứ hai nên thời gian để làm một chiếc mũ kiểu thứ nhất là (giờ).
Thời gian để làm x chiếc mũ kiểu thứ nhất là (giờ).
Thời gian để làm y chiếc mũ kiểu thứ hai là (giờ).
Tổng thời gian để làm hai loại mũ trong một ngày là (giờ).
Vì một ngày phân xưởng làm việc 8 tiếng nên .
Khi đó bài toán đã cho đưa về: Tìm x, y là nghiệm của hệ bất phương trình
sao cho T = 24x + 15y có giá trị lớn nhất.
Trước hết, ta xác định miền nghiệm của hệ bất phương trình (I).
Miền nghiệm của hệ bất phương trình (I) là miền không bị gạch chéo tính cả biến hay chính là miền ngũ giác ACDEO với A(0; 240), C(120; 240), D(200; 80), E(200; 0), O(0; 0) (hình dưới).
(A là giao điểm của trục tung và đường thẳng y = 240 nên A(0; 240); C là giao điểm của đường thẳng y = 240 và 2x + y = 480 nên C(120; 240), D là giao điểm của đường thẳng 2x + y = 480 và x = 200 nên D(200; 80), E là giao điểm của trục hoành và đường thẳng x = 200 nên E(200; 0)).
Người ta chứng minh được: Biểu thức T = 24x + 15y có giá trị lớn nhất tại một trong các đỉnh của ngũ giác ACDEO.
Tính giá trị của biểu thức T = 24x + 15y tại các cặp số (x; y) là tọa độ các đỉnh của ngũ giác ACDEO:
+ Tại đỉnh A: T = 24 . 0 + 15 . 240 = 3 600;
+ Tại đỉnh C: T = 24 . 120 + 15 . 240 = 6 480;
+ Tại đỉnh D: T = 24 . 200 + 15 . 80 = 6 000;
+ Tại đỉnh E: T = 24 . 200 + 15 . 0 = 4 800;
+ Tại đỉnh O: T = 24 . 0 + 15 . 0 = 0
So sánh giá trị của biểu thức T tại các đỉnh, ta thấy T đạt giá trị lớn nhất bằng 6 480 khi x = 120 và y = 240 ứng với tọa độ đỉnh C.
Vậy để tiền lãi thu được là cao nhất, trong một ngày xưởng cần sản xuất 120 chiếc mũ kiểu thứ nhất và 240 chiếc mũ kiểu thứ hai.
Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh Diều hay, chi tiết khác: