Cho tam giác ABC cân tại A có H là hình chiếu của A trên đường thẳng BC, lấy điểm M nằm giữa A và H. Chứng minh
202
06/01/2024
Bài 53 trang 85 SBT Toán 7 Tập 2: Cho tam giác ABC cân tại A có H là hình chiếu của A trên đường thẳng BC, lấy điểm M nằm giữa A và H. Chứng minh:
a) BH = CH;
b) MB = MC;
c) MA < AC.
Trả lời
a) Vì tam giác ABC cân tại A nên AB = AC.
Xét AHB và AHC có:
,
BA = AC (chứng minh trên),
AH là cạnh chung
Do đó ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).
Suy ra BH = CH (hai cạnh tương ứng).
Vậy BH = CH.
b) Vì ∆ABH = ∆ACH (chứng minh câu a)
Suy ra (hai góc tương ứng).
Xét AMB và AMC có:
BA = AC (chứng minh câu a),
(do ),
AM là cạnh chung
Do đó ∆ABM = ∆ACM (c.g.c).
Suy ra BM = CM (hai cạnh tương ứng).
Vậy BM = CM.
c) Vì là góc ngoài của tam giác CMH tại đỉnh M
Nên
Mà nên là góc tù
Xét tam giác AMC có là góc tù
Nên MC < AC (trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất).
Vậy MC < AC.
Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 6. Trường hợp bằng nhau thứ ba của tam giác:
Bài 7. Tam giác cân
Bài 8. Đường vuông góc và đường xiên
Bài 9. Đường trung trực của một đoạn thẳng
Bài 10. Tính chất ba đường trung tuyến của tam giác
Bài 11. Tính chất ba đường phân giác của tam giác