Sách bài tập Toán 6 Bài 3: Phép cộng, phép trừ phân số
Bài 27 trang 37 sách bài tập Toán lớp 6 Tập 2: Tính các tổng sau (tính hợp lí nếu có thể):
Lời giải:
a) .
b) .
c)
.
d)
.
e)
.
Bài 28 trang 37 sách bài tập Toán lớp 6 Tập 2: So sánh các biểu thức:
Lời giải:
a) Ta có:
và .
Do và nên .
Vậy A > B.
b) Ta có:
và .
Vì –112 > –225 nên
và –65 < –36 nên
Suy ra hay C > – 1 > D.
Vậy C > D.
c) Ta có:
và
.
Do đó hay M > N.
Vậy M > N.
d) Ta có:
và .
Do đó P < 1 < Q.
Vậy P < Q.
Bài 29 trang 37 sách bài tập Toán lớp 6 Tập 2: Không tính trực tiếp, chứng tỏ tổng của ba phân số sau: nhỏ hơn .
Lời giải:
Đặt .
“Làm trội” mỗi phân số để tính toán cho đơn giản:
.
Do đó .
Suy ra .
Ta so sánh và .
Do 15 > 2 nên do đó
Hay .
Vậy tổng của ba phân số nhỏ hơn
Bài 30 trang 37 sách bài tập Toán lớp 6 Tập 2: Viết tên một giáo sư đoạt giải thưởng Toán học cao quý nhất thế giới bằng cách thực hiện các yêu cầu sau: tính các tổng sau đây, rồi điền các chữ vào vị trí tương ứng với tổng vừa tính ở bảng sau:
Lời giải:
Ta thực hiện các phép tính:
C. ;
N. ;
O. ;
B. ;
Ô. ;
G. ;
Ả. ;
H. ;
Â. ;
U. .
Ta điền như sau:
Vậy tên giáo sư đó là “NGÔ BẢO CHÂU”.
Bài 31 trang 38 sách bài tập Toán lớp 6 Tập 2: Tìm số nguyên x, biết:
a) ;
b) .
Lời giải:
a) Ta có:
–4 ≤ x ≤ 1
Mà x ∈ ℤ, suy ra x ∈ {–4; –3; –2; –1; 0; 1}.
Vậy x ∈ {–4; –3; –2; –1; 0; 1}.
b) Ta có:
Do đó 1 < x ≤ 2.
Mà x ∈ ℤ, suy ra .
Vậy x = 2.
Bài 32 trang 38 sách bài tập Toán lớp 6 Tập 2: Tìm tổng các phân số đồng thời lớn hơn, nhỏ hơn và có tử là 5.
Lời giải:
Giả sử các phân số có tử là 5 có dạng (x ∈ ℤ, x ≠ 0).
Ta có suy ra
Do đó –10 > x > –15.
Mà x ∈ ℤ, suy ra x ∈ {–11; –12; –13; –14}.
Khi đó các phân số cần tìm là <.
Tổng các phân số trên là:
.
Vậy tổng cần tìm bằng .
Bài 33 trang 38 sách bài tập Toán lớp 6 Tập 2: Ba ô tô cùng chuyển long nhãn từ một kho ở Hưng Yên lên Hà Nội. Ô tô thứ nhất, thứ hai, thứ ba chuyển được lần lượt và số long nhãn trong kho. Cả ba ô tô chuyển được bao nhiêu phần long nhãn trong kho?
Lời giải:
Cả ba ô tô chuyển được số long nhãn là:
(số long nhãn trong kho).
Vậy cả ba ô tô chuyển được số long nhãn trong kho.
Bài 34 trang 38 sách bài tập Toán lớp 6 Tập 2: Người thứ nhất đi xe đạp từ A đến B hết 5 giờ; người thứ hai đi xe máy từ B về A hết 2 giờ; người thứ hai khởi hành sau người thứ nhất 2 giờ. Hỏi sau khi người thứ hai đi được 1 giờ thì hai người đã gặp nhau chưa?
Lời giải:
Do người thứ hai khởi hành sau người thứ nhất 2 giờ nên sau khi người thứ hai đi được 1 giờ thì người thứ nhất đã đi được 3 giờ.
Người thứ nhất đi xe đạp từ A đến B hết 5 giờ nên trong 1 giờ người đi xe đạp đi được quãng đường. Do đó trong 3 giờ người đi xe đạp đi được quãng đường.
Người thứ hai đi xe máy từ B về A hết 2 giờ nên trong 1 giờ người đi xe máy đi được quãng đường.
Tổng quãng đường hai người đã đi là:
(quãng đường).
Vì nên tổng quãng đường hai người đi được đã lớn hơn quãng đường AB, do đó hai người đã gặp nhau.
Vậy sau khi người thứ hai đi được 1 giờ thì hai người đã gặp nhau.
Bài 35 trang 38 sách bài tập Toán lớp 6 Tập 2: Một người hỏi Py-ta-go về số học trò của ông. Ông nói: “Một nửa số học trò của tôi đang học Toán, một phần tư đang học Nhạc, một phần bảy đang ngồi suy nghĩ. Số còn lại là 3 người”. Ông có bao nhiêu học trò?
Lời giải:
Số học trò học Toán, học Nhạc và đang suy nghĩ là:
(số học trò).
Số học trò còn lại là: (số học trò).
Do đó số học trò tương ứng với 3 người.
Vậy số học trò của Py-ta-go là 28 người.
Bài 36 trang 38 sách bài tập Toán lớp 6 Tập 2: Có 5 quả cam chia đều cho 6 người. Làm thế nào để chia được mà không phải cắt bất kì quả cam nào thành 6 phần bằng nhau?
Lời giải:
Có 5 quả cam chia đều cho 6 người thì mỗi người được quả cam.
Ta có: .
Do đó mỗi người được quả cam và quả cam nữa.
Vì vậy để không phải cắt bất kì một quả cam nào thành 6 phần bằng nhau ta sẽ chia như sau:
Lấy 3 quả cam, mỗi quả chia thành 2 phần bằng nhau thì có đủ 6 phần cho 6 người.
Lấy 2 quả cam còn lại, mỗi quả chia 3 thì được 6 phần bằng nhau cũng đủ chia cho 6 người.
Bài 37 trang 38 sách bài tập Toán lớp 6 Tập 2: Hoàn thành hai tháp số sau:
Lời giải:
Áp dụng quy tắc cho tháp số thứ nhất:
;
;
;
Áp dụng quy tắc cho tháp số thứ hai:
;
;
.
Vậy ta điền được các phân số vào tháp số như sau:
Xem thêm các bài giải SBT Toán 6 Cánh diều hay, chi tiết khác:
Bài 1: Phân số với tử và mẫu là số nguyên
Bài 2: So sánh các phân số. Hỗn số dương
Bài 4: Phép nhân, phép chia phân số
Bài 5: Số thập phân
Bài 6: Phép cộng, phép trừ số thập phân