Câu hỏi:
19/01/2024 55Xét tính đồng biến, nghịch biến của hàm số \(y = \sqrt[3]{x} + 3\).
A. Hàm số đã cho đồng biến trên tập xác định;
Đáp án chính xác
B. Hàm số đã cho nghịch biến trên tập xác định;
C. Hàm số đã cho vừa đồng biến, vừa nghịch biến trên tập xác định;
D. Không thể xác định được hàm số đồng biến hay nghịch biến trên tập xác định.
Trả lời:
Giải bởi Vietjack
Hướng dẫn giải
Đáp án đúng là: A
Xét hàm số \(y = f\left( x \right) = \sqrt[3]{x} + 3\).
Tập xác định của hàm số này là D = ℝ.
Lấy x1, x2 tùy ý thuộc ℝ sao cho x1 < x2, ta có: x1 < x2.
Suy ra \(\sqrt[3]{{{x_1}}} < \sqrt[3]{{{x_2}}}\).
Khi đó ta có \(\sqrt[3]{{{x_1}}} + 3 < \sqrt[3]{{{x_2}}} + 3\).
Do đó f(x1) < f(x2).
Vì vậy hàm số đã cho đồng biến (tăng) trên ℝ.
Vậy ta chọn phương án A.
Hướng dẫn giải
Đáp án đúng là: A
Xét hàm số \(y = f\left( x \right) = \sqrt[3]{x} + 3\).
Tập xác định của hàm số này là D = ℝ.
Lấy x1, x2 tùy ý thuộc ℝ sao cho x1 < x2, ta có: x1 < x2.
Suy ra \(\sqrt[3]{{{x_1}}} < \sqrt[3]{{{x_2}}}\).
Khi đó ta có \(\sqrt[3]{{{x_1}}} + 3 < \sqrt[3]{{{x_2}}} + 3\).
Do đó f(x1) < f(x2).
Vì vậy hàm số đã cho đồng biến (tăng) trên ℝ.
Vậy ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai đại lượng x và y phụ thuộc vào nhau theo các hệ thức dưới đây. Trường hợp nào thì y không phải là hàm số của x?
Xem đáp án »
19/01/2024
98
Câu 2:
Hàm số y = f(x) có đồ thị như hình vẽ bên.
Khẳng định nào sau đây đúng?
Xem đáp án »
19/01/2024
94
Câu 3:
Xét sự đồng biến, nghịch biến của hàm số \[f\left( x \right) = \frac{3}{x}\] trên khoảng (0; +∞). Khẳng định nào sau đây đúng?
Xem đáp án »
19/01/2024
72
Câu 4:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{ - 1}}{{x - 1}},\,\,\,\,\,\,\,\,khi\,\,x \le 0\\\sqrt {x + 2} ,\,\,\,khi\,\,x > 0\end{array} \right.\). Tập xác định của hàm số là tập hợp nào sau đây?
Xem đáp án »
19/01/2024
63
Câu 6:
Điểm nào sau đây thuộc đồ thị hàm số \[y = \frac{{2x - 1}}{{x\left( {3x - 4} \right)}}\]?
Xem đáp án »
19/01/2024
58
Câu 7:
Tập xác định D của hàm số \[f\left( x \right) = 2\sqrt {x + 1} - \frac{5}{x}\].
Xem đáp án »
19/01/2024
57