Xác định số hạng không chứa x trong khai triển ( x^2 - 2/x)^6 ( x lớn hơn bằng 0)    A. – 160. B. 60. C. 160.   D. 240.

Xác định số hạng không chứa \[x\] trong khai triển \[{\left( {{x^2} - \frac{2}{x}} \right)^6}\left( {x \ne 0} \right)\]
A. – 160.
B. 60.
C. 160.
D. 240.

Trả lời

Đáp án D

Phương pháp:

Sử dụng khai triển nhị thức Newton: \[{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}\,\,\left( {0 \le k \le n} \right)} \].

Cách giải:

Ta có: \[{\left( {{x^2} - \frac{2}{x}} \right)^6} = \sum\limits_{k = 0}^6 {C_6^k{{\left( {{x^2}} \right)}^{6 - k}}{{\left( { - \frac{2}{x}} \right)}^k} = } \sum\limits_{k = 0}^6 {C_6^k{{\left( { - 2} \right)}^k}{x^{12 - 2k}}{x^{ - k}} = \sum\limits_{k = 0}^6 {C_6^k{{\left( { - 2} \right)}^k}{x^{12 - 3k}}} } \]

Số hạng không chứa \[x\] ứng với \[12 - 3k = 0 \Leftrightarrow k = 4\left( {tm} \right)\].

Vậy số hạng không chứa \[x\] trong khai triển trên là \[C_6^4.{\left( { - 2} \right)^4} = 240\].

Câu hỏi cùng chủ đề

Xem tất cả