Giải phương trình căn bậc hai của 3 sin 2x + cos 2x = 2cos x
a. Giải phương trình \[\sqrt 3 \sin 2x + \cos 2x = 2\cos x\].
a. Giải phương trình \[\sqrt 3 \sin 2x + \cos 2x = 2\cos x\].
Đáp án
a.
Phương trình dạng \[a\sin x + b\cos x = c\]. Chia cả 2 vế cho \[\sqrt {{a^2} + {b^2}} \].
Giải chi tiết:
Ta có:
\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \sqrt 3 \sin 2x + \cos 2x = 2\cos x \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin 2x + \frac{1}{2}\cos 2x = \cos x\]
\[ \Leftrightarrow \sin \frac{\pi }{3}.\sin 2x + \cos \frac{\pi }{3}.\cos 2x = \cos x\]
\[ \Leftrightarrow \cos \left( {2x - \frac{\pi }{3}} \right) = \cos x \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2x - \frac{\pi }{3} = x + k2\pi }\\{2x - \frac{\pi }{3} = - x + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{3} + k2\pi }\\{x = \frac{\pi }{9} + k\frac{{2\pi }}{3}}\end{array}} \right.{\mkern 1mu} {\mkern 1mu} \left( {k \in Z} \right)\]
Vậy, phương trình đã cho có nghiệm \[x = \frac{\pi }{3} + k2\pi ,{\mkern 1mu} {\mkern 1mu} x = \frac{\pi }{9} + k\frac{{2\pi }}{3};{\mkern 1mu} {\mkern 1mu} k \in Z\]