Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, E lần lượt là trung điểm của AB, BC, SO.  a) Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng ( MNE).  b) Mặt p

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm O. Gọi M, N, E lần lượt là trung điểm của AB, BC, SO.

 a) Xác định thiết diện của hình chóp \[S.ABCD\] cắt bởi mặt phẳng \[\left( {MNE} \right)\].

 b) Mặt phẳng \[\left( {MNE} \right)\] cắt SD tại K, tính tỉ số \[\frac{{KS}}{{KD}}\].

Trả lời

Giải chi tiết:

Media VietJack

a) Trong (ABCD), gọi \[I = MN \cap AD,\]\[J = MN \cap CD\], \[F = MN \cap BD\]

Trong (SBD), gọi \[K = EF \cap SD\]

Trong (SAD), gọi \[Q = IK \cap SA\]

Trong (SAD), gọi \[P = JK \cap SC\]

Khi đó, thiết diện của hình chóp \[S.ABCD\] cắt bởi mặt phẳng \[\left( {MNE} \right)\] là ngũ giác \[MNPKQ\]

b) MN là đường trung bình của \[\Delta ABC \Rightarrow MN//AC\]

\[ \Rightarrow MF{\rm{//}}AC \Rightarrow \] F là trung điểm của OB \[ \Rightarrow BF = \frac{1}{2}OB = \frac{1}{4}BD \Rightarrow BF = \frac{1}{3}FD\]

Xét \[\Delta SOB\] có: E, F lần lượt là trung điểm của SO, OB \[ \Rightarrow EF\] là đường trung bình của \[\Delta SOB\]

\[ \Rightarrow EF{\rm{//}}SB \Rightarrow FK{\rm{//}}SB \Rightarrow \frac{{KS}}{{KD}} = \frac{{BF}}{{DF}} = \frac{1}{3}\]

Vậy, \[\frac{{KS}}{{KD}} = \frac{1}{3}\]

Câu hỏi cùng chủ đề

Xem tất cả