Với hai tam giác ABC và MNP bất kì, sao cho ∆ABC = ∆MNP, những câu nào dưới đây đúng

Bài 4.11 trang 56 Tập 1: Với hai tam giác ABC và MNP bất kì, sao cho ∆ABC = ∆MNP, những câu nào dưới đây đúng?

a) AB = MN, AC = MP, BC = NP.

b) A^=M^,   B^=N^,   C^=P^.

c) BA = NM, CA = PM, CB = PN.

d) B^=P^,   C^=M^,   A^=N^.

Trả lời

Khi ∆ABC = ∆MNP ta có các cặp cạnh bằng nhau và các cặp góc bằng nhau là:

A^=M^,   B^=N^,   C^=P^AB=MN,    BC=NP,  AC=MP.

Từ đây ta rút ra được các khẳng định đúng là a, b, c.

Xem thêm các bài giải SBT Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Ôn tập chương 3

Bài 12: Tổng các góc trong một tam giác

Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác

Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác

Bài 15: Các trường hợp bằng nhau của tam giác vuông

Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng

Câu hỏi cùng chủ đề

Xem tất cả