Cho các điểm A, B, C, D, E như Hình 4.18, biết rằng AB = AC, AD = AE, BD = CE. Chứng minh rằng góc AEB = góc ADC
Bài 4.19 trang 58 Tập 1: Cho các điểm A, B, C, D, E như Hình 4.18, biết rằng AB = AC, AD = AE, BD = CE. Chứng minh rằng .
Bài 4.19 trang 58 Tập 1: Cho các điểm A, B, C, D, E như Hình 4.18, biết rằng AB = AC, AD = AE, BD = CE. Chứng minh rằng .
Ta có:
BE = BD + DE
DC = CE + DE
Mà BD = CE nên BE = DC.
Xét hai tam giác ∆ABE và ∆ACD có:
AB = AC (giả thiết)
AE = AD (giả thiết)
BE = DC (chứng minh trên)
Do đó, ∆ABE = ∆ACD (c – c – c)
Suy ra, (hai góc tương ứng).
Xem thêm các bài giải SBT Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 12: Tổng các góc trong một tam giác
Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác