Viết phân thức biểu thị thời gian cần thiết để xả hết nước trong bể khi bể chứa đầy

Một bể chứa nước có hai vòi thoát. Biết rằng khi bể chứa đầy nước thì thời gian cần thiết để xả hết nước trong bể mà chỉ dùng vòi thứ nhất là x (giờ) và thời gian cần thiết để xả hết nước trong bể mà chỉ dùng vòi thứ hai là y (giờ).

Viết phân thức biểu thị thời gian cần thiết để xả hết nước trong bể (khi bể chứa đầy nước) nếu mở cả hai vòi.

Trả lời

Gọi t (giờ) là thời gian cần thiết để xả hết nước trong bể (khi bể chứa đầy nước) khi mở cả hai vòi.

Như vậy, trong một giờ cả hai vòi cùng mở sẽ xả được \(\frac{1}{t}\) (bể).

Mặt khác, từ giả thiết suy ra trong một giờ, một mình vòi thứ nhất xả hết \(\frac{1}{x}\) (bể), một mình vòi thứ hai xả được \(\frac{1}{y}\) (bể).

Do đó, trong một giờ cả hai vòi cùng mở sẽ xả được \(\frac{1}{x} + \frac{1}{y} = \frac{{x + y}}{{xy}}\) (bể).

Từ đó suy ra: \(\frac{1}{t} = \frac{{x + y}}{{xy}}\). Do đó \(t = \frac{{xy}}{{x + y}}\).

Câu hỏi cùng chủ đề

Xem tất cả