Từ các số 1, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có 4 chữ số đôi một khác nhau? A. 49 B. 45 C. 47 D. 48
Từ các số 1, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có 4 chữ số đôi một khác nhau?
A. 49
B. 45
C. 47
D. 48
Đáp án D
Phương pháp:
Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} {\rm{ }}\left( {a \ne 0} \right)\).
- Chọn chữ số \(d\).
- Chọn các chữ số còn lại.
- Áp dụng quy tắc nhân.
Cách giải:
Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} {\rm{ }}\left( {a \ne 0} \right)\).
Vì \(\overline {abcd} {\rm{ }}\left( {a \ne 0} \right)\) là số chẵn nên \(d \in \left\{ {4;6} \right\}\) Þ Có 2 cách chọn \(d\).
Ứng với mỗi cách chọn \(d\) có \(A_4^3 = 24\) cách chọn 3 chữ số còn lại.
Áp dụng quy tắc nhân ta có: 2.24 = 48 số thỏa mãn.