Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có bốn chữ số đôi một khác nhau?    A. 360.   B. 180.   C. 120.   D. 15.

Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có bốn chữ số đôi một khác nhau?
A. 360.
B. 180.
C. 120.
D. 15.

Trả lời

Đáp án B

Phương pháp:           

+ Gọi số có 4 chữ số cần lập là \[\overline {abcd} \left( {0 \le a;b;c;d \le 9;\,a \ne 0;\,a,b,c,d \in \mathbb{N}} \right)\].

+ Chọn từng chữ số, sau đó áp dụng quy tắc nhân.

Cách giải:

Gọi số có 4 chữ số cần lập là \[\overline {abcd} \left( {0 \le a;b;c;d \le 9;\,a \ne 0;\,a,b,c,d \in \mathbb{N}} \right)\].

+ Số cần lập là số chẵn \[ \Rightarrow d \in \left\{ {2;4;6} \right\} \Rightarrow \] Có 3 cách chọn \[d\].

+ Ứng với mỗi cách chọn \[d\]\[A_5^3 = 60\] cách chọn 3 chữ số \[a,b,c\].

Áp dụng quy tắc nhân ta có: \[3.60 = 180\] số thỏa mãn.

Câu hỏi cùng chủ đề

Xem tất cả