Câu hỏi:
18/12/2023 111
Trục đối xứng của parabol y = x2 – 4x + 1
Trục đối xứng của parabol y = x2 – 4x + 1
A. x = 2;
A. x = 2;
B. x = – 2;
B. x = – 2;
C. x = 4;
C. x = 4;
D. x = – 4.
D. x = – 4.
Trả lời:
Đáp án đúng là: A
Trục đối xứng \[{\rm{x}}\,{\rm{ = }}\,--\frac{{\rm{b}}}{{{\rm{2a}}}}{\rm{ = }}--\frac{{--\,{\rm{4}}}}{{\rm{2}}}{\rm{ = }}\,{\rm{2}}\].
Đáp án đúng là: A
Trục đối xứng \[{\rm{x}}\,{\rm{ = }}\,--\frac{{\rm{b}}}{{{\rm{2a}}}}{\rm{ = }}--\frac{{--\,{\rm{4}}}}{{\rm{2}}}{\rm{ = }}\,{\rm{2}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax2 + bx + c có đồ thị như hình sau:
Kết luận nào sau đây đúng về hệ số a, b:
Cho hàm số y = ax2 + bx + c có đồ thị như hình sau:
Kết luận nào sau đây đúng về hệ số a, b:
Câu 2:
Cho hàm số y = ax2 + bx + c có đồ thị như hình dưới đây. Hàm số đó là hàm số nào?
Cho hàm số y = ax2 + bx + c có đồ thị như hình dưới đây. Hàm số đó là hàm số nào?
Câu 3:
Biết rằng P: y = ax2 + bx + 2 (a > 1) đi qua điểm M(–1; 6) và có tung độ đỉnh bằng \( - \frac{1}{4}\). Tính tích P = a.b.
Biết rằng P: y = ax2 + bx + 2 (a > 1) đi qua điểm M(–1; 6) và có tung độ đỉnh bằng \( - \frac{1}{4}\). Tính tích P = a.b.
Câu 4:
Parabol y = ax2 + bx + c đạt giá trị nhỏ nhất bằng 4 tại x = – 2 và đi qua
A(0; 6) có phương trình là
Parabol y = ax2 + bx + c đạt giá trị nhỏ nhất bằng 4 tại x = – 2 và đi qua
A(0; 6) có phương trình là
Câu 6:
Cho parabol y = ax2 + bx – 3. Xác định hệ số a, b biết parabol có đỉnh
I(– 1; – 5)
Cho parabol y = ax2 + bx – 3. Xác định hệ số a, b biết parabol có đỉnh
I(– 1; – 5)
Câu 7:
Đồ thị hàm số y = 4x2 – 3x – 1 có dạng nào trong các dạng sau đây?
Đồ thị hàm số y = 4x2 – 3x – 1 có dạng nào trong các dạng sau đây?
Câu 10:
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt cực đại bằng 3 tại x = 2 và có đồ thị hàm số đi qua điểm A(0; – 1). Tính tổng S = a + b + c.
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt cực đại bằng 3 tại x = 2 và có đồ thị hàm số đi qua điểm A(0; – 1). Tính tổng S = a + b + c.
Câu 11:
Cho hàm số y = 2x2 – 4x – 1. Kết luận nào đúng trong các kết luận sau
Cho hàm số y = 2x2 – 4x – 1. Kết luận nào đúng trong các kết luận sau
Câu 14:
Cho hàm số y = f(x) có đồ thị như hình sau:
Hàm số đồng biến trên khoảng
Cho hàm số y = f(x) có đồ thị như hình sau:
Hàm số đồng biến trên khoảng