Trong một trò chơi, người chơi cần gieo cùng lúc ba con súc sắc cân đối, đồng chất; nếu được ít nhất hai con súc sắc xuất hiện mặt có số chấm lớn hơn 4 thì người chơi đó thắng. Tính xác suất

Trong một trò chơi, người chơi cần gieo cùng lúc ba con súc sắc cân đối, đồng chất; nếu được ít nhất hai con súc sắc xuất hiện mặt có số chấm lớn hơn 4 thì người chơi đó thắng. Tính xác suất để trong ba lần chơi, người chơi thắng ít nhất một lần.
A. \(\frac{{11683}}{{19683}}\)
B. \(\frac{2}{9}\)
C. \(\frac{{386}}{{729}}\)
D. \(\frac{7}{{27}}\)

Trả lời

Đáp án A

Phương pháp:

+ Tính xác suất để người chơi thua 1 lần

+ Tính xác suất \({P_1}\) để người chơi thua 3 lần

+ Tính xác suất để người chơi có ít nhất 1 lần thắng: \(P = 1 - {P_1}\)

Cách giải:

+ Không gian mẫu: \(n\left( \Omega \right) = 6.6.6 = 216\)  

+ Để người chơi thua thì

- Chỉ có 1 con súc sắc có mặt hơn 4 chấm: \(C_3^1.2.C_4^1C_4^1\)

- Cả ba con súc sắc đều có mặt không lớn hơn 4 chấm: \(C_4^1C_4^1C_4^1\)

Xác suất để người đó chơi thua 1 lần là \({P_1} = \frac{{C_3^1.2.4.4 + C_4^1C_4^1C_4^1}}{{216}} = \frac{{20}}{{27}}\)

Xác suất để người đó chơi thua 3 cả lần chơi là \({\left( {{P_1}} \right)^3} = {\left( {\frac{{20}}{{27}}} \right)^3}\)

Xác suất để người đó thắng ít nhất 1 lần trong 3 lần chơi là \(P = 1 - {\left( {\frac{{20}}{{27}}} \right)^3} = \frac{{11683}}{{19683}}\)

Câu hỏi cùng chủ đề

Xem tất cả