Trong một cấp số nhân gồm các số hạng dương, hiệu của số hạng thứ năm và số hạng thứ tư là 576, hiệu của số hạng thứ hai và số hạng đầu tiên là 9. Tìm tổng S3 của 3 số hạng đầu của cấp số nhâ
Đáp án D
Phương pháp
Cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng thứ n là \({u_n} = {u_1}.{q^{n - 1}}\)
Tổng n số hạng đầu của dãy \({S_n} = \frac{{{u_1}\left( {{q^n} - 1} \right)}}{{q - 1}}\)
Cách giải:
Gọi cấp số nhân \(\left( {{u_n}} \right)\), \({u_n} > 0;\,\forall n\) có số hạng đầu \({u_1}\) và công bội \(q \ne 1\) thì theo đề bài ta có
\(\left\{ \begin{array}{l}{u_5} - {u_4} = 576\\{u_2} - {u_1} = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^4} - {u_1}{q^3} = 576\\{u_1}q - {u_1} = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^3}\left( {q - 1} \right) = 576\\{u_1}\left( {q - 1} \right) = 9\end{array} \right.\)
Vì \(q \ne 1\) nên ta có \(\frac{{{u_1}{q^3}\left( {q - 1} \right)}}{{{u_1}\left( {q - 1} \right)}} = \frac{{576}}{9} \Leftrightarrow {q^3} = 64 \Leftrightarrow q = 4\left( {tm} \right)\)
Suy ra \({u_1} = 3\)
Do đó \({S_3} = \frac{{{u_1}\left( {{q^3} - 1} \right)}}{{\left( {q - 1} \right)}} = \frac{{3\left( {{4^3} - 1} \right)}}{{4 - 1}} = 63\)