Câu hỏi:
20/12/2023 158
Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng đi qua điểm Q(–1; –1) và cắt hai trục tọa độ tại hai điểm A và B sao cho tam giác OAB vuông cân là:
Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng đi qua điểm Q(–1; –1) và cắt hai trục tọa độ tại hai điểm A và B sao cho tam giác OAB vuông cân là:
A. x + y – 2 = 0;
A. x + y – 2 = 0;
B. x – y – 2 = 0;
B. x – y – 2 = 0;
C. x – y + 2 = 0;
D. x + y + 2 = 0.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: D
Gọi điểm A thuộc vào trục Ox, điểm B thuộc vào trục Oy. Khi đó: A(a; 0) và B(0; b).
Phương trình đoạn chắn của đường thẳng AB là: .
Do tam giác OAB vuông cân tại O nên suy ra |a| = |b|. Xảy ra 2 trường hợp như sau:
⦁ Trường hợp 1.
Với b = a ta có phương trình đoạn chắn của đường thẳng AB là: , tức là x + y – a = 0.
Mà Q(–1; –1) thuộc vào đường thẳng AB nên ta có: –1 – 1 – a = 0, suy ra a = –2 và b = –2.
Vậy phương trình đường thẳng AB là: x + y + 2 = 0.
⦁ Trường hợp 2.
Với b = –a ta có phương trình đoạn chắn của đường thẳng AB là: .
Mà Q(–1; –1) thuộc vào đường thẳng AB nên ta có: –1 + 1 – a = 0, suy ra a = 0 và b = 0 (loại vì khi đó ba điểm A, B, O trùng nhau).
Vậy phương trình đường thẳng AB là: x + y + 2 = 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho điểm M(1; 2). Gọi A, B là hình chiếu của M lên Ox, Oy. Phương trình đường thẳng AB theo đoạn chắn là
Trong mặt phẳng tọa độ Oxy, cho điểm M(1; 2). Gọi A, B là hình chiếu của M lên Ox, Oy. Phương trình đường thẳng AB theo đoạn chắn là
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d đi qua điểm M(3; 2), cắt tia Ox tại A và cắt tia Oy tại B sao cho diện tích tam giác OAB đạt giá trị nhỏ nhất. Khi đó phương trình đường thẳng d theo đoạn chắn là:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d đi qua điểm M(3; 2), cắt tia Ox tại A và cắt tia Oy tại B sao cho diện tích tam giác OAB đạt giá trị nhỏ nhất. Khi đó phương trình đường thẳng d theo đoạn chắn là:
Câu 3:
Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng đi qua hai điểm A(0; –3) và B(4; 0) là
Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng đi qua hai điểm A(0; –3) và B(4; 0) là
Câu 4:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d cắt hai trục tọa độ Ox, Oy lần lượt tại hai điểm A và B. Biết điểm M(–4; 6) và B là trung điểm của AM. Phương trình đường thẳng d theo đoạn chắn là
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d cắt hai trục tọa độ Ox, Oy lần lượt tại hai điểm A và B. Biết điểm M(–4; 6) và B là trung điểm của AM. Phương trình đường thẳng d theo đoạn chắn là
Câu 5:
Trong mặt phẳng tọa độ Oxy, cho điểm M(1; 2). Đường thẳng d đi qua M (không đi qua gốc O) và chắn hai trục tọa độ hai đoạn thẳng có độ dài bằng nhau. Phương trình nào sau đây là một phương trình đoạn chắn của đường thẳng d?
Trong mặt phẳng tọa độ Oxy, cho điểm M(1; 2). Đường thẳng d đi qua M (không đi qua gốc O) và chắn hai trục tọa độ hai đoạn thẳng có độ dài bằng nhau. Phương trình nào sau đây là một phương trình đoạn chắn của đường thẳng d?
Câu 6:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x – y + 4 = 0. Phương trình đoạn chắn của đường thẳng d là
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x – y + 4 = 0. Phương trình đoạn chắn của đường thẳng d là
Câu 7:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d đi qua M(–2; 7) và cắt hai trục tọa độ tại hai điểm A và B sao cho M là trung điểm của AB. Phương trình đường thẳng d theo đoạn chắn là
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d đi qua M(–2; 7) và cắt hai trục tọa độ tại hai điểm A và B sao cho M là trung điểm của AB. Phương trình đường thẳng d theo đoạn chắn là
Câu 8:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: Phương trình đoạn chắn của đường thẳng d là:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: Phương trình đoạn chắn của đường thẳng d là:
Câu 9:
Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng cắt hai trục tọa độ tại hai điểm M(–1; 0) và N(0; 2) là
Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng cắt hai trục tọa độ tại hai điểm M(–1; 0) và N(0; 2) là