Câu hỏi:

29/12/2023 119

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(3; 4), B(2; 1), C(–1; –2). Cho M(x; y) trên đoạn thẳng BC sao cho SABC = 4SABM. Khi đó x2 – y2 bằng:

A. \(\frac{{13}}{8}\);

Đáp án chính xác

B. \(\frac{3}{2}\);

C. \( - \frac{3}{2}\);

D. \(\frac{5}{2}\).

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Media VietJack

Kẻ AH BC tại H.

Ta có:

\(\overrightarrow {BC} = \left( { - 3; - 3} \right)\). Suy ra \(\frac{1}{4}\overrightarrow {BC} = \left( {\frac{1}{4}.\left( { - 3} \right);\frac{1}{4}.\left( { - 3} \right)} \right) = \left( {\frac{{ - 3}}{4};\frac{{ - 3}}{4}} \right)\);

\(\overrightarrow {BM} = \left( {x - 2;y - 1} \right)\).

Ta có SABC = 4SABM

Suy ra \(\frac{1}{2}AH.BC = 4.\frac{1}{2}AH.BM\)

Do đó BC = 4BM

Vì vậy \(BM = \frac{1}{4}BC\)

Suy ra \(\overrightarrow {BM} = \frac{1}{4}\overrightarrow {BC} \)

Do đó \(\left\{ \begin{array}{l}x - 2 = - \frac{3}{4}\\y - 1 = - \frac{3}{4}\end{array} \right.\)

Vì vậy \(\left\{ \begin{array}{l}x = \frac{5}{4}\\y = \frac{1}{4}\end{array} \right.\)

Suy ra \({x^2} - {y^2} = {\left( {\frac{5}{4}} \right)^2} + {\left( {\frac{1}{4}} \right)^2} = \frac{{13}}{8}\).

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai điểm A(2; 2), B(5; 1) và đường thẳng ∆: x – 2y + 8 = 0. Lấy điểm C ∆. Điểm C có hoành độ dương sao cho diện tích tam giác ABC bằng 17. Tọa độ của C là:

Xem đáp án » 29/12/2023 176

Câu 2:

Cho đường tròn (C): x2 + y2 + 2x – 6y + 5 = 0. Phương trình tiếp tuyến của (C) song song với đường thẳng d: x + 2y – 15 = 0 là:

Xem đáp án » 29/12/2023 113

Câu 3:

Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:

Xem đáp án » 29/12/2023 109

Câu 4:

Cho elip (E): \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Đường thẳng d: x = –4 cắt (E) tại hai điểm M, N. Khi đó:

Xem đáp án » 29/12/2023 75

Câu hỏi mới nhất

Xem thêm »
Xem thêm »