Câu hỏi:

29/12/2023 75

Cho elip (E): \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Đường thẳng d: x = –4 cắt (E) tại hai điểm M, N. Khi đó:

A. \(MN = \frac{9}{{25}}\);

B. \(MN = \frac{{18}}{{25}}\);

C. \(MN = \frac{{18}}{5}\);

Đáp án chính xác

D. \(MN = \frac{9}{5}\).

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Tọa độ giao điểm của đường thẳng d và elip (E) thỏa mãn hệ phương trình: \[\left\{ \begin{array}{l}x = - 4\\\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\end{array} \right.\]

\( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\\frac{{{{\left( { - 4} \right)}^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\{y^2} = \frac{{81}}{{25}}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\y = \pm \frac{9}{5}\end{array} \right.\)

Suy ra tọa độ \(M\left( { - 4; - \frac{9}{5}} \right),\,\,N\left( { - 4;\frac{9}{5}} \right)\).

Khi đó \(MN = \sqrt {{{\left( { - 4 + 4} \right)}^2} + {{\left( {\frac{9}{5} + \frac{9}{5}} \right)}^2}} = \frac{{18}}{5}\).

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai điểm A(2; 2), B(5; 1) và đường thẳng ∆: x – 2y + 8 = 0. Lấy điểm C ∆. Điểm C có hoành độ dương sao cho diện tích tam giác ABC bằng 17. Tọa độ của C là:

Xem đáp án » 29/12/2023 176

Câu 2:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(3; 4), B(2; 1), C(–1; –2). Cho M(x; y) trên đoạn thẳng BC sao cho SABC = 4SABM. Khi đó x2 – y2 bằng:

Xem đáp án » 29/12/2023 118

Câu 3:

Cho đường tròn (C): x2 + y2 + 2x – 6y + 5 = 0. Phương trình tiếp tuyến của (C) song song với đường thẳng d: x + 2y – 15 = 0 là:

Xem đáp án » 29/12/2023 113

Câu 4:

Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:

Xem đáp án » 29/12/2023 109

Câu hỏi mới nhất

Xem thêm »
Xem thêm »