Trong mặt phẳng toạ độ Oxy cho hai điểm M(–2; 1) và N(4; 5). a) Tìm toạ độ của điểm P

Bài 4.24 trang 58 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm M(–2; 1) và N(4; 5).

a) Tìm toạ độ của điểm P thuộc Ox sao cho PM = PN.

b) Tìm toạ độ của điểm Q sao cho MQ=2PN.

c) Tìm toạ độ của điểm R thoả mãn RM+2RN=0. Từ đó suy ra P, Q, R thẳng hàng.

Trả lời

a) Gọi P(a; 0) là điểm thuộc tia Ox.

Với M(–2; 1) và N(4; 5) ta có:

Sách bài tập Toán 10 Bài 10: Vectơ trong mặt phẳng tọa độ - Kết nối tri thức (ảnh 1)

 Do đó PM = PN 2a2+12=4a2+52

 (–2 – a)2 + 12 = (4 – a)2 + 52

 4 + 4a + a2 + 1 = 16 – 8a + a2 + 25

 12a = 36

 a = 3.

Vậy P(3; 0).

b) Giả sử điểm Q có tọa độ là Q(x; y).

Với M(–2; 1), N(4; 5) và P(3; 0) ta có:

Sách bài tập Toán 10 Bài 10: Vectơ trong mặt phẳng tọa độ - Kết nối tri thức (ảnh 1)

Do đó MQ=2PNx+2=2y1=10

x=0y=11  Q(0; 11).

Vậy Q(0; 11).

c) Giả sử R(x0; y0) là điểm cần tìm.

Với M(–2; 1) và N(4; 5) ta có:

Sách bài tập Toán 10 Bài 10: Vectơ trong mặt phẳng tọa độ - Kết nối tri thức (ảnh 1)

Do đó 

Sách bài tập Toán 10 Bài 10: Vectơ trong mặt phẳng tọa độ - Kết nối tri thức (ảnh 1)

+) Ta xét ba điểm: P(3; 0), Q(0; 11) và R2;113

PQ=3;11và QR=2;11311=2;223

Có: 32=11223 nên hai vectơ PQ và QR cùng phương

Do đó P, Q, R thẳng hàng

Vậy ba điểm P, Q, R thẳng hàng.

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 8: Tổng và hiệu của hai vectơ

Bài 9: Tích của một vectơ với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Bài 12: Số gần đúng và sai số

Câu hỏi cùng chủ đề

Xem tất cả