Trong mặt phẳng toạ độ Oxy cho ba điểm M(4; 0), N(5; 2) và P(2, 3). Tìm toạ độ các đỉnh của tam giác
102
11/01/2024
Bài 4.22 trang 58 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho ba điểm M(4; 0), N(5; 2) và P(2, 3). Tìm toạ độ các đỉnh của tam giác ABC, biết M, N, P theo thứ tự là trung điểm cạnh BC, CA, AB.
Trả lời
Cách 1:
Gọi A(xA; yA); B(xB; yB) và C(xC; yC) là tọa độ ba đỉnh của tam giác ABC.
Ta có:
+) M(4; 0) là trung điểm của BC nên
(1)
+) N(5; 2) là trung điểm của CA nên
(2)
+) P(2; 3) là trung điểm của AB nên
(3)
Thay (2) và (3) vào (1) ta được:
A(3; 5)
Khi đó B(1; 1)
C(7; –1)
Vậy A(3; 5), B(1; 1) và C(7; –1).
Cách 2:
Do M, N, P lần lượt là trung điểm của BC, CA, AB
Nên MN, NP, PM là các đường trung bình của tam giác ABC.
MN // AB, NP // BC, MP // AC.
+) Do MN // BM và NP // BM nên tứ giác MNPB là hình bình hành
Gọi B(xB; yB) và có M(4; 0), N(5; 2) và P(2, 3).
và
Khi đó Þ B(1; 1)
Tương tự ta cũng có A(3; 5) và C(7; –1).
Vậy A(3; 5), B(1; 1) và C(7; –1).
Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 8: Tổng và hiệu của hai vectơ
Bài 9: Tích của một vectơ với một số
Bài 10: Vectơ trong mặt phẳng tọa độ
Bài 11: Tích vô hướng của hai vectơ
Bài tập cuối chương 4
Bài 12: Số gần đúng và sai số