Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình x^2 + y^2 - 2x + 4y - 4 = 0 và điểm I (2;l). Phép vị tự tâm I tỉ số k = 2 biến đường tròn ( C ) thành đường tròn (C'). Viết phươ

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình\[{x^2} + {y^2} - 2x + 4y - 4 = 0\]và điểm I (2;l). Phép vị tự tâm I tỉ số k = 2 biến đường tròn\[\left( C \right)\]thành đường tròn (C'). Viết phương trình đường tròn\[\left( {C'} \right)\].

Trả lời

 

Phương pháp:

- Xác định tâm J và bán kính R của đường tròn (C).

- Tìm\[J' = {V_{\left( {I;k} \right)}}\left( J \right)\], bán kính\[R' = \left| k \right|R.\]

- Viết phương trình đường tròn \[\left( {C'} \right)\]tâm \[J'\]bán kính\[R'.\]

Cách giải:

Đường tròn \[\left( C \right)\]có tâm \[J\left( {1; - 2} \right)\]bán kính\[R = \sqrt {{1^2} + {{\left( { - 2} \right)}^2} - \left( { - 4} \right)} = \sqrt 9 = 3.\]

Gọi \[J'\left( {x;y} \right)\]là ảnh của J của phép vị tự tâm I tỉ số \[k = 2\]ta có:

\[{V_{\left( {I;2} \right)}}\left( J \right) = J' \Leftrightarrow \overrightarrow {IJ'} = 2\overrightarrow {IJ} \Leftrightarrow \left\{ \begin{array}{l}x - 2 = 2\left( {1 - 2} \right)\\y - 1 = 2\left( { - 2 - 1} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = - 5\end{array} \right. \Rightarrow J'\left( {0; - 5} \right).\]

Gọi \[\left( {C'} \right) = {V_{\left( {I;2} \right)}}\left( C \right) \Rightarrow \left( {C'} \right)\]là đường tròn tâm \[J'\left( {0;5} \right)\]bán kính\[R' = 2R = 6.\]

Vậy phương trình\[\left( {C'} \right):{x^2} + {\left( {y + 5} \right)^2} = 36.\]

Câu hỏi cùng chủ đề

Xem tất cả