Trong mặt phẳng tọa độ Oxy, cho Delta :x - 2y - 1 = 0 và vecto u ( 4;3 ). Gọi d là đường thẳng sao cho T vecto u biến d thành đường thẳng Delta. Phương trình đường thẳng d là    A. x - 2y +

Trong mặt phẳng tọa độ Oxy, cho \(\Delta :x - 2y - 1 = 0\)\(\overrightarrow u \left( {4;3} \right)\). Gọi \(d\) là đường thẳng sao cho \({T_{\overrightarrow u }}\) biến \(d\) thành đường thẳng \(\Delta \). Phương trình đường thẳng \(d\) là
A. \(x - 2y + 1 = 0\).
B. \(x - 2y + 9 = 0\).
C. \(x - 2y - 3 = 0\).
D. \(x - 2y - 9 = 0\).

Trả lời

Đáp án A

Phương pháp:

Phép tính tiến biến đường thẳng thành đường thẳng song song với nó.

Cách giải:

\(\Delta = {T_{\overrightarrow u }}\left( d \right) \Rightarrow \Delta ||d\) Þ Phương trình \(\Delta \) có dạng: \(x - 2y + c = 0\left( \Delta \right)\).

Lấy \(A\left( {1;0} \right)\) bất kì thuộc \(d\). Gọi \(A' = {T_{\overrightarrow u }}\left( A \right) \Rightarrow A' \in \Delta \).

Ta có: \(A' \in {T_{\overrightarrow u }}\left( A \right) \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = {x_A} + {x_{\overrightarrow u }} = 1 + 4 = 5\\{y_{A'}} = {y_A} + {y_{\overrightarrow u }} = 0 + 3 = 3\end{array} \right. \Rightarrow A'\left( {5;3} \right)\).

Vì \(A' \in \Delta \Rightarrow 5 - 2.3 + c = 0 \Leftrightarrow c = 1\).

Vậy phương trình đường thẳng \(\Delta \) là: \(x - 2y + 1 = 0\).

Câu hỏi cùng chủ đề

Xem tất cả