Câu hỏi:
29/12/2023 66Trong mặt phẳng tọa độ Oxy, cho các điểm M(0; – 2), N(2; 4), P(– 5; 1), Q(– 3; 7). Cặp vectơ nào sau đây bằng nhau?
A. \(\overrightarrow {MP} \) và \(\overrightarrow {NQ} \);
B. \(\overrightarrow {MN} \) và \(\overrightarrow {QP} \);
C. \(\overrightarrow {MQ} \) và \(\overrightarrow {NP} \);
D. \(\overrightarrow {NM} \) và \(\overrightarrow {NP} \).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
⦁ Ta có \(\overrightarrow {MP} = \left( {{x_P} - {x_M};{y_P} - {y_M}} \right) = \left( { - 5;3} \right)\) và \(\overrightarrow {NQ} = \left( {{x_Q} - {x_N};{y_Q} - {y_N}} \right) = \left( { - 5;3} \right)\).
Suy ra \(\overrightarrow {MP} = \overrightarrow {NQ} \).
Do đó phương án A đúng.
⦁ Ta có \(\overrightarrow {MN} = \left( {{x_N} - {x_M};{y_N} - {y_M}} \right) = \left( {2;6} \right)\) và \(\overrightarrow {QP} = \left( {{x_P} - {x_Q};{y_P} - {y_Q}} \right) = \left( { - 2; - 6} \right)\).
Suy ra \(\overrightarrow {MN} \ne \overrightarrow {QP} \).
Do đó phương án B sai.
⦁ Ta có \(\overrightarrow {MQ} = \left( {{x_Q} - {x_M};{y_Q} - {y_M}} \right) = \left( { - 3;9} \right)\) và \[\overrightarrow {NP} = \left( {{x_P} - {x_N};{y_P} - {y_N}} \right) = \left( { - 7; - 3} \right)\].
Suy ra \(\overrightarrow {MQ} \ne \overrightarrow {NP} \).
Do đó phương án C sai.
⦁ Ta có \(\overrightarrow {NM} = \left( {{x_M} - {x_N};{y_M} - {y_N}} \right) = \left( { - 2; - 6} \right)\) và \(\overrightarrow {NP} = \left( {{x_P} - {x_N};{y_P} - {y_N}} \right) = \left( { - 7; - 3} \right)\).
Suy ra \(\overrightarrow {NM} \ne \overrightarrow {NP} \).
Do đó phương án D sai.
Vậy ta chọn phương án A.
Hướng dẫn giải
Đáp án đúng là: A
⦁ Ta có \(\overrightarrow {MP} = \left( {{x_P} - {x_M};{y_P} - {y_M}} \right) = \left( { - 5;3} \right)\) và \(\overrightarrow {NQ} = \left( {{x_Q} - {x_N};{y_Q} - {y_N}} \right) = \left( { - 5;3} \right)\).
Suy ra \(\overrightarrow {MP} = \overrightarrow {NQ} \).
Do đó phương án A đúng.
⦁ Ta có \(\overrightarrow {MN} = \left( {{x_N} - {x_M};{y_N} - {y_M}} \right) = \left( {2;6} \right)\) và \(\overrightarrow {QP} = \left( {{x_P} - {x_Q};{y_P} - {y_Q}} \right) = \left( { - 2; - 6} \right)\).
Suy ra \(\overrightarrow {MN} \ne \overrightarrow {QP} \).
Do đó phương án B sai.
⦁ Ta có \(\overrightarrow {MQ} = \left( {{x_Q} - {x_M};{y_Q} - {y_M}} \right) = \left( { - 3;9} \right)\) và \[\overrightarrow {NP} = \left( {{x_P} - {x_N};{y_P} - {y_N}} \right) = \left( { - 7; - 3} \right)\].
Suy ra \(\overrightarrow {MQ} \ne \overrightarrow {NP} \).
Do đó phương án C sai.
⦁ Ta có \(\overrightarrow {NM} = \left( {{x_M} - {x_N};{y_M} - {y_N}} \right) = \left( { - 2; - 6} \right)\) và \(\overrightarrow {NP} = \left( {{x_P} - {x_N};{y_P} - {y_N}} \right) = \left( { - 7; - 3} \right)\).
Suy ra \(\overrightarrow {NM} \ne \overrightarrow {NP} \).
Do đó phương án D sai.
Vậy ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho hai điểm B(–1; 3) và C(5; 2). Tọa độ của \(\overrightarrow {BC} \) là:
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho A(2; –3), B(4; 7). Tọa độ trung điểm I của đoạn thẳng AB là:
Câu 3:
Cho điểm A(–2; 3) và \(\overrightarrow {AM} = 3\vec i - 2\vec j\).
Vectơ nào trong hình là \(\overrightarrow {AM} \)?
Câu 4:
Trong mặt phẳng tọa độ Oxy, cho \[\vec g = \left( {2x;1 - 3y} \right)\] và \[\vec h = \left( {x - y;3y - x} \right)\]. Khi đó \(\vec g = \vec h\) khi và chỉ khi:
Câu 5:
Trong mặt phẳng tọa độ Oxy, cho ba điểm E (2; – 3), F(4; 7), G(1; 5). Nếu \(\overrightarrow {EF} = \overrightarrow {GH} \) thì tọa độ điểm H là:
Câu 6:
Trong mặt phẳng tọa độ Oxy, cho \[\vec a = \left( {1;5} \right)\] và \(\vec b = \left( {3u + v;u - 2v} \right)\). Khi đó \(\vec a = \vec b\) khi và chỉ khi: