Trong mặt phẳng ( P ) cho hình bình hành ABCD. Gọi Ax, By, Cz, Dt lần lượt là các đường thẳng song song với nhau đi qua A, B, C, D và nằm về cùng một phía của mặt phẳng ( P ) đồng thời không

Trong mặt phẳng \(\left( P \right)\) cho hình bình hành ABCD. Gọi Ax, By, Cz, Dt lần lượt là các đường thẳng song song với nhau đi qua A, B, C, D và nằm về cùng một phía của mặt phẳng \(\left( P \right)\) đồng thời không nằm trong \(\left( P \right)\). Một mặt phẳng \(\left( \alpha \right)\) lần lượt cắt Ax, By, Cz, Dt tại \(A'\), \(B'\), \(C'\), \(D'\) biết \(BB' = 5,2\,cm\), \(CC' = 8,6\,cm\), \[DD' = 7,8\,cm\]. Tính \[AA'\].
A. 6cm.
B. 21,6cm
C. 11,2cm.
D. 4,4cm.

Trả lời

Đáp án C

Phương pháp:

Dựa vào tính chất đường trung bình của hình thang.

Cách giải:

Media VietJack

Do Ax, By, Cz, Dt song song với nhau cắt mặt phẳng \(\left( \alpha \right)\) lần lượt tại \(A'\), \(B'\), \(C'\), \(D'\)nên \(A'B'C'D'\) là hình bình hành và có tâm là \(O'\).

Gọi O là tâm hình bình hành ABCD.

Ta có \[OO'\] là đường trung bình của hình thang \[BDD'B'\], \(ACC'A'\).

\( \Rightarrow \frac{{A'A + CC'}}{2} = O'O = \frac{{BB' + D'D}}{2}\)

\( \Leftrightarrow A'A + CC' = BB' + D'D\)

\( \Leftrightarrow A'A = 5,2 + 7,8 - 8,6 = 4,4\,cm\)

Câu hỏi cùng chủ đề

Xem tất cả