Trong mặt phẳng Oxy, cho đường thẳng d có phương trình 3x - 2y + 1 = 0. Ảnh của đường thẳng d qua phép vị tự tâm O, tỉ số k = 2 có phương trình là:    A. 2x - 3y + 2 = 0.       B. 2x + 3y +

Trong mặt phẳng \[Oxy\], cho đường thẳng \[d\] có phương trình \[3x - 2y + 1 = 0\]. Ảnh của đường thẳng \[d\] qua phép vị tự tâm \[O\], tỉ số \[k = 2\] có phương trình là:
A. \[2x - 3y + 2 = 0\].
B. \[2x + 3y + 2 = 0\].
C. \[3x + 2y + 2 = 0\].
D. \[3x - 2y + 2 = 0\]

Trả lời

Đáp án D

Phương pháp:

+ Sử dụng định nghĩa phép vị tự: \[{V_{\left( {I;k} \right)}}\left( M \right) = M' \Leftrightarrow \overrightarrow {IM'} = k\overrightarrow {IM} \]

+ Sử dụng tính chất phép vị tự: Phép vị tự biến đường thẳng thành đường thẳng song song hoặc trùng với nó.

Cách giải:

Gọi \[d' = {V_{\left( {O;2} \right)}}\left( d \right) \Rightarrow d'//d \Rightarrow \] Phương trình \[d'\] có dạng \[3x - 2y + c = 0\].

 Lấy \[A\left( { - 1;1} \right) \in d\]. Gọi \[A' = {V_{\left( {O;2} \right)}} \Rightarrow \overrightarrow {OA'} = 2\overrightarrow {OA} \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = 2.\left( { - 1} \right) = - 2\\{y_{A'}} = 2.\left( { - 1} \right) = - 2\end{array} \right. \Rightarrow A'\left( { - 2; - 2} \right)\].

\[A' \in d' \Rightarrow 3.\left( { - 2} \right) - 2.\left( { - 2} \right) + c = 0 \Leftrightarrow c = 2\].

Vậy \[d':3x - 2y + 2 = 0\].

Câu hỏi cùng chủ đề

Xem tất cả