Câu hỏi:
20/12/2023 629
Trong mặt phẳng cho tam giác ABC cân tại C có B(2; –1), A(4; 3). Phương trình đường cao CH là
Trong mặt phẳng cho tam giác ABC cân tại C có B(2; –1), A(4; 3). Phương trình đường cao CH là
A. x – 2y – 1 = 0;
A. x – 2y – 1 = 0;
B. x – 2y + 1 = 0;
B. x – 2y + 1 = 0;
C. 2x + y – 2 = 0;
D. x + 2y – 5 = 0.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: D
Gọi H là trung điểm của AB.
Tam giác ABC cân tại C nên đường trung tuyến CH đồng thời là đường cao, do đó CH ⊥ AB.
Khi đó đường cao CH nhận vectơ chỉ phương của AB làm một vectơ pháp tuyến.
Với B(2; –1) và A(4; 3), ta có H(3; 1) và
Khi đó đường cao CH đi qua điểm H(3; 1) và nhận làm một vectơ pháp tuyến nên có phương trình là: 1(x – 3) + 2(y – 1) = 0, tức là x + 2y – 5 = 0.
Hướng dẫn giải:
Đáp án đúng là: D
Gọi H là trung điểm của AB.
Tam giác ABC cân tại C nên đường trung tuyến CH đồng thời là đường cao, do đó CH ⊥ AB.
Khi đó đường cao CH nhận vectơ chỉ phương của AB làm một vectơ pháp tuyến.
Với B(2; –1) và A(4; 3), ta có H(3; 1) và
Khi đó đường cao CH đi qua điểm H(3; 1) và nhận làm một vectơ pháp tuyến nên có phương trình là: 1(x – 3) + 2(y – 1) = 0, tức là x + 2y – 5 = 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 3) và hai đường trung tuyến BM: x – 2y + 1 = 0 và CN: y – 1 = 0. Phương trình đường thẳng AB là
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 3) và hai đường trung tuyến BM: x – 2y + 1 = 0 và CN: y – 1 = 0. Phương trình đường thẳng AB là
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có M(2; 0) là trung điểm của cạnh AB. Đường trung tuyến và đường cao từ đỉnh A có phương trình lần lượt là: 7x – 2y – 3 = 0 và 6x – y – 4 = 0. Phương trình đường thẳng AC là
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có M(2; 0) là trung điểm của cạnh AB. Đường trung tuyến và đường cao từ đỉnh A có phương trình lần lượt là: 7x – 2y – 3 = 0 và 6x – y – 4 = 0. Phương trình đường thẳng AC là
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2; −1) và hai đường cao xuất phát từ B và C có phương trình lần lượt là: 2x – y + 1 = 0 và 3x + y + 2 = 0. Phương trình cạnh BC là
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2; −1) và hai đường cao xuất phát từ B và C có phương trình lần lượt là: 2x – y + 1 = 0 và 3x + y + 2 = 0. Phương trình cạnh BC là
Câu 4:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–2; –1), B(–1; 3), C(6; 1). Phương trình đường phân giác ngoài góc A của tam giác ABC là
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–2; –1), B(–1; 3), C(6; 1). Phương trình đường phân giác ngoài góc A của tam giác ABC là
Câu 5:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(0; –2), B(1; 1), C(4; 2). Phương trình đường trung tuyến của tam giác ABC kẻ từ A là
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(0; –2), B(1; 1), C(4; 2). Phương trình đường trung tuyến của tam giác ABC kẻ từ A là
Câu 6:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 2), B(3; 1), C(5; 4). Phương trình nào sau đây là phương trình đường cao kẻ từ A của tam giác ABC?
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 2), B(3; 1), C(5; 4). Phương trình nào sau đây là phương trình đường cao kẻ từ A của tam giác ABC?
Câu 7:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–2; –1), B(–1; 3), C(6; 1). Phương trình đường phân giác trong góc A của tam giác ABC là
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–2; –1), B(–1; 3), C(6; 1). Phương trình đường phân giác trong góc A của tam giác ABC là
Câu 8:
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2; 4), B(5; 0) và C(2; 1). Trung tuyến BM của tam giác đi qua điểm N có hoành độ bằng 20 thì tung độ bằng
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2; 4), B(5; 0) và C(2; 1). Trung tuyến BM của tam giác đi qua điểm N có hoành độ bằng 20 thì tung độ bằng
Câu 9:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tọa độ trung điểm các cạnh BC, AC, AB lần lượt là M(2; 1), N(5; 3), P(3; –4). Phương trình đường thẳng BC là
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tọa độ trung điểm các cạnh BC, AC, AB lần lượt là M(2; 1), N(5; 3), P(3; –4). Phương trình đường thẳng BC là