Trong khai triển nhị thức ( 8a^3 - b/2)^6, số hạng thứ 4 là: A. - 1280a^9/b^3 B. - 64a^9b^3 C. - 80a^9b^3 D. 60a^6b^4
29
24/04/2024
Trong khai triển nhị thức \[{\left( {8{a^3} - \frac{b}{2}} \right)^6}\], số hạng thứ 4 là:
A. \[ - 1280{a^9}{b^3}\]
B. \[ - 64{a^9}{b^3}\]
C. \[ - 80{a^9}{b^3}\]
D. \[60{a^6}{b^4}\]
Trả lời
Đáp án A
Phương pháp:
Sử dụng công thức khai triển nhị thức Newton: \[{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \]
Cách giải:
Ta có: \[{\left( {8{a^3} - \frac{b}{2}} \right)^6} = \sum\limits_{k = 0}^6 {C_6^k{{\left( {8{a^3}} \right)}^{6 - k}}.{{\left( { - \frac{b}{2}} \right)}^k}} \]
Số hạng thứ 4 ứng với \[k = 3\] nên số hạng đó là \[C_6^3{\left( {8{a^3}} \right)^{6 - 3}}.{\left( { - \frac{b}{2}} \right)^3} = - C_6^3{.8^3}.{a^9}.\frac{{{b^3}}}{8} = - 1280{a^9}{b^3}\].