Trong khai triển f( x ) = ( 2x - 3)^16 =a16x^16 + a15x^15 + a14x^14 + ... + a3x^3 + a2x^2 + a1x + a0 thì tổng của tất cả các hệ số là    A. - 1  B. 1    C. 12432678   D. Kết quả khác

Trong khai triển \(f\left( x \right) = {\left( {2x - 3} \right)^{16}} = {a_{16}}{x^{16}} + {a_{15}}{x^{15}} + {a_{14}}{x^{14}} + ... + {a_3}{x^3} + {a_2}{x^2} + {a_1}x + {a_0}\) thì tổng của tất cả các hệ số là
A. \( - 1\)
B. 1
C. \(12432678\)
D. Kết quả khác

Trả lời

Đáp án B

Phương pháp:

Sử dụng khai triển nhị thức Newton \[{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}},} \] sau đó cho \(x = 1\) để tìm tổng các hệ số.

Cách giải:

\({\left( {2x - 3} \right)^{16}} = \sum\limits_{k = 0}^{16} {c_{16}^k{{\left( {2x} \right)}^k}{{\left( { - 3} \right)}^{16 - k}} = \sum\limits_{k = 0}^{16} {C_{16}^k{2^k}{{\left( { - 3} \right)}^{16 - k}}{x^k}} } \)

Khi \(x = 1\) ta có \({\left( {2.1 - 3} \right)^{16}} = \sum\limits_{k = 0}^{16} {C_{16}^k{2^k}{{\left( { - 3} \right)}^{16 - k}} = 1.} \)

Vậy tổng tất cả hệ số trong khai triển trên là 1.

Câu hỏi cùng chủ đề

Xem tất cả