Trong hệ trục tọa độ Oxy, cho vec v( 3;3 ) và đường tròn ( C ): ( x - 1)^2 + ( y + 2)^2 = 9. Tìm phương trình đường tròn ( C') là ảnh của ( C ) qua phép tịnh tiến (T vec v).  A. ( C't): ( x

Trong hệ trục tọa độ Oxy, cho \(\vec v\left( {3;3} \right)\) và đường tròn \(\left( C \right)\): \[{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\]. Tìm phương trình đường tròn \[\left( {C'} \right)\] là ảnh của \(\left( C \right)\) qua phép tịnh tiến \({T_{\vec v}}\).
A. \[\left( {C'} \right)\]: \[{\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} = 9\].
B. \[\left( {C'} \right)\]: \[{\left( {x - 2} \right)^2} + {\left( {y - 5} \right)^2} = 9\].
C. \[\left( {C'} \right)\]: \[{\left( {x + 4} \right)^2} + {\left( {y + 1} \right)^2} = 9\].
D. \[\left( {C'} \right)\]: \[{\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} = 3\].

Trả lời

Đáp án A

Phương pháp:

Áp dụng tính chất của phép tịnh tiến điểm M thành \(M'\) theo vectơ v thì \(\overrightarrow {MM'} = \vec v\).

Cách giải:

Đường tròn \(\left( C \right)\): \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 9\) có tâm \(I\left( {1; - 2} \right)\); bán kính \(R = 3\).

Gọi \(I'\) là tâm đường tròn \(\left( {C'} \right)\).

Phép tịnh tiến điểm I thành điểm \(I'\) theo véc-tơ \(\vec v\left( {3;3} \right)\) thì \(\overrightarrow {II'} = \vec v\)

Suy ra \(I'\left( {4;1} \right)\)

Đường tròn \(\left( {C'} \right)\) có tâm là \(I'\left( {4;1} \right)\); \(R = 3\) nên có dạng \({\left( {x - 4} \right)^2} + {\left( {y - 1} \right)^2} = 9\).

Câu hỏi cùng chủ đề

Xem tất cả