Trong hệ trục tọa độ Oxy, cho đường thẳng d: 3x - y + 1 = 0. Tìm phương trình đường thẳng d' là ảnh của d qua phép quay Q( 0; - 90^0).    A. x - 3y - 1 = 0.    B. x + 3y - 1 = 0.    C. 3x -

Trong hệ trục tọa độ Oxy, cho đường thẳng d: \(3x - y + 1 = 0\). Tìm phương trình đường thẳng \(d'\) là ảnh của d qua phép quay \(Q\left( {0; - 90^\circ } \right)\).
A. \(x - 3y - 1 = 0\).
B. \(x + 3y - 1 = 0\).
C. \(3x - y - 3 = 0\).
D. \(x + 3y + 1 = 0\).

Trả lời

Đáp án B

Phương pháp:

Sử dụng tính chất của phép quay.

Cách giải:

Ta có \(\left( d \right)\): \(3x - y + 1 = 0\)

Gọi \(M\left( {0;1} \right) \in d\); Phép quay \({Q_{\left( {O; - 90^\circ } \right)}}\left( M \right) = M'\left( {a;b} \right)\)

\( \Rightarrow \overrightarrow {OM} \left( {0;1} \right)\); \(\overrightarrow {OM'} \left( {a;b} \right)\).

Phép quay \({Q_{\left( {O; - 90^\circ } \right)}}\left( d \right) = d'\) nên \(\left\{ \begin{array}{l}\overrightarrow {{n_d}} .\overrightarrow {{n_{d'}}} = 0\\OM' = OM = 1\\\overrightarrow {OM'} .\overrightarrow {OM} = 0\end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {{n_{d'}}} \left( {1; - 3} \right)\\{a^2} + {b^2} = 1\\b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{n_{d'}}} \left( {1; - 3} \right)\\b = 0\\a = 1\left( {do\,\,\alpha = 90^\circ } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{n_{d'}}} \left( {1; - 3} \right)\\M'\left( {1;0} \right)\end{array} \right.\)

Khi đó phương trình đường thẳng \(\left( {d'} \right)\)\(x + 3y - 1 = 0\)

Câu hỏi cùng chủ đề

Xem tất cả