Trong các phương trình sau, phương trình nào có nghiệm?    A. sin ^2x + sin x - 6 = 0    B. cos x = pi /2   C. cot ^2x - cot x + 5 = 0   D. 2cos 2x - cos x - 3 = 0

Trong các phương trình sau, phương trình nào có nghiệm?

A. \[{\sin ^2}x + \sin x - 6 = 0\]
B. \[\cos x = \frac{\pi }{2}\]
C. \[{\cot ^2}x - \cot x + 5 = 0\]
D. \[2\cos 2x - \cos x - 3 = 0\]

Trả lời

Đáp án D

Phương pháp:

Đưa các phương trình về dạng phương trình tích.

Sử dụng các phương trình lượng giác cơ bản \[\sin x = a;\cos x = a,\tan x = b,\cot x = b\] với \[ - 1 \le a \le 1\].

Cách giải:

Đáp án A: \[{\sin ^2}x + \sin x - 6 = 0 \Leftrightarrow \left( {\sin x + 3} \right)\left( {\sin x - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\sin x = - 3\left( {VN} \right)\\\sin x = 2\;\left( {VN} \right)\end{array} \right.\].

Nên loại A.

Đáp án B: \[\cos x = \frac{\pi }{2}\] vô nghiệm vì \[\frac{\pi }{2} > 1\], do đó loại B.

Đáp án C: \[{\cot ^2}x - \cot x + 5 = 0 \Leftrightarrow {\left( {\cot x - \frac{1}{2}} \right)^2} + \frac{{19}}{4} = 0\] (vô nghiệm) nên loại C.

Đáp án D: \[\begin{array}{l}2\cos 2x - \cos x - 3 = 0 \Leftrightarrow 2\left( {2{{\cos }^2}x - 1} \right) - \cos x - 3 = 0\\ \Leftrightarrow 4{\cos ^2}x - \cos x - 5 = 0 \Leftrightarrow \left[ \begin{array}{l}\cos x = - 1\\\cos x = \frac{5}{4}\left( {VN} \right)\end{array} \right. \Rightarrow x = \pi + k2\pi \left( {k \in \mathbb{Z}} \right)\end{array}\]

Câu hỏi cùng chủ đề

Xem tất cả