Câu hỏi:
21/12/2023 115
Bất phương trình mx2 – (2m – 1)x + m + 1 < 0 vô nghiệm khi và chỉ khi
Bất phương trình mx2 – (2m – 1)x + m + 1 < 0 vô nghiệm khi và chỉ khi
A. ;
B. ;
C. ;
D. .
Trả lời:
Đáp án đúng là: D
+) Khi m = 0, ta có:
mx2 – (2m – 1)x + m + 1 < 0
⇔ x + 1 < 0
⇔ x < –1
Do đó, m = 0 không thỏa mãn yêu cầu đề bài
+) Khi m ≠ 0, ta có:
Xét tam thức: f(x) = mx2 – (2m – 1)x + m + 1 có:
a = m,
∆ = [–(2m – 1)2] – 4.m.(m + 1) = 4m2 – 4m + 1 – 4m2 – 4m = –8m + 1
Để mx2 – (2m – 1)x + m + 1 < 0 vô nghiệm khi và chỉ khi mx2 – (2m – 1)x + m + 1 ≥ 0 với mọi số thực x
Vậy khi thì bất phương trình mx2 – (2m – 1)x + m + 1 < 0 vô nghiệm.
Đáp án đúng là: D
+) Khi m = 0, ta có:
mx2 – (2m – 1)x + m + 1 < 0
⇔ x + 1 < 0
⇔ x < –1
Do đó, m = 0 không thỏa mãn yêu cầu đề bài
+) Khi m ≠ 0, ta có:
Xét tam thức: f(x) = mx2 – (2m – 1)x + m + 1 có:
a = m,
∆ = [–(2m – 1)2] – 4.m.(m + 1) = 4m2 – 4m + 1 – 4m2 – 4m = –8m + 1
Để mx2 – (2m – 1)x + m + 1 < 0 vô nghiệm khi và chỉ khi mx2 – (2m – 1)x + m + 1 ≥ 0 với mọi số thực x
Vậy khi thì bất phương trình mx2 – (2m – 1)x + m + 1 < 0 vô nghiệm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm m để bất phương trình sau (m + 2)2 – 2mx + m2 + 2m ≤ 0 có nghiệm.
Tìm m để bất phương trình sau (m + 2)2 – 2mx + m2 + 2m ≤ 0 có nghiệm.
Câu 2:
Tìm tham số m để bất phương trình: f(x) = (m2 + 1)x2 + (2m – 1)x – 5 < 0 có nghiệm đúng với mọi x thuộc khoảng (−1; 1).
Tìm tham số m để bất phương trình: f(x) = (m2 + 1)x2 + (2m – 1)x – 5 < 0 có nghiệm đúng với mọi x thuộc khoảng (−1; 1).
Câu 4:
Phương trình (m + 2) x2 – 3x + 2m – 3 = 0 có hai nghiệm trái dấu khi và chỉ khi
Phương trình (m + 2) x2 – 3x + 2m – 3 = 0 có hai nghiệm trái dấu khi và chỉ khi