Câu hỏi:
18/12/2023 144
Hai người cùng kéo một con thuyền với hai lực \[\overrightarrow {{F_1}} = \overrightarrow {OA} ,\,\,\overrightarrow {{F_2}} = \overrightarrow {OB} \] có độ lớn lần lượt là 550 N, 800 N. Cho biết góc giữa hai vectơ là 52o.
Độ lớn của vectơ hợp lực \[\overrightarrow F \] là tổng của hai lực \[\overrightarrow {{F_1}} \] và \[\overrightarrow {{F_2}} \] nằm trong khoảng nào dưới đây?
Hai người cùng kéo một con thuyền với hai lực \[\overrightarrow {{F_1}} = \overrightarrow {OA} ,\,\,\overrightarrow {{F_2}} = \overrightarrow {OB} \] có độ lớn lần lượt là 550 N, 800 N. Cho biết góc giữa hai vectơ là 52o.
Độ lớn của vectơ hợp lực \[\overrightarrow F \] là tổng của hai lực \[\overrightarrow {{F_1}} \] và \[\overrightarrow {{F_2}} \] nằm trong khoảng nào dưới đây?
A. (900; 1 000);
A. (900; 1 000);
B. (1 000; 1 100);
B. (1 000; 1 100);
C. (1 100; 1 200);
C. (1 100; 1 200);
D. (1 200; 1 300).
D. (1 200; 1 300).
Trả lời:
Đáp án đúng là D
Dựng hình bình hành AOBC.
Khi đó \[\overrightarrow F = \overrightarrow {OC} \].
Do AOBC là hình bình hành nên \[\widehat {AOB} + \widehat {OBC} = 180^\circ \] và OA = BC = 550.
Do đó \[\widehat {OBC} = 180^\circ - \widehat {AOB} = 180^\circ - 52^\circ = 128^\circ \].
Áp dụng định lí côsin vào tam giác OBC có:
OC2 = OB2 + BC2 - 2.OB.BC.cos \[\widehat {OBC}\]
\[ \Rightarrow \] OC2 = 8002 + 5502 - 2.800.550.cos 128o
\[ \Rightarrow \] OC2 ≈ 1 484 282, 1
\[ \Rightarrow \] OC ≈ 1 218,3 N (do OC là độ dài đoạn thẳng nên OC > 0)
Suy ra \[\left| {\overrightarrow F } \right|\] ≈ 1 218,3 N.
Vậy độ lớn lực \(\overrightarrow F \) nằm trong khoảng (1 200; 1 300).
Đáp án đúng là D
Dựng hình bình hành AOBC.
Khi đó \[\overrightarrow F = \overrightarrow {OC} \].
Do AOBC là hình bình hành nên \[\widehat {AOB} + \widehat {OBC} = 180^\circ \] và OA = BC = 550.
Do đó \[\widehat {OBC} = 180^\circ - \widehat {AOB} = 180^\circ - 52^\circ = 128^\circ \].
Áp dụng định lí côsin vào tam giác OBC có:
OC2 = OB2 + BC2 - 2.OB.BC.cos \[\widehat {OBC}\]
\[ \Rightarrow \] OC2 = 8002 + 5502 - 2.800.550.cos 128o
\[ \Rightarrow \] OC2 ≈ 1 484 282, 1
\[ \Rightarrow \] OC ≈ 1 218,3 N (do OC là độ dài đoạn thẳng nên OC > 0)
Suy ra \[\left| {\overrightarrow F } \right|\] ≈ 1 218,3 N.
Vậy độ lớn lực \(\overrightarrow F \) nằm trong khoảng (1 200; 1 300).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho tam giác ABC có I là trung điểm cạnh AB và G là trọng tâm tam giác ABC. Đẳng thức nào sau đây sai:
Cho tam giác ABC có I là trung điểm cạnh AB và G là trọng tâm tam giác ABC. Đẳng thức nào sau đây sai:
Câu 3:
Cho hình bình hành ABCD có tâm O, G là trọng tâm tam giác BCD. Đẳng thức nào sau đây sai?
Cho hình bình hành ABCD có tâm O, G là trọng tâm tam giác BCD. Đẳng thức nào sau đây sai?
Câu 4:
Hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) cùng tác động lên một vật, cho \(\left| {\overrightarrow {{F_1}} } \right| = 7N,\left| {\overrightarrow {{F_2}} } \right| = 3N\). Tính độ lớn của hợp lực \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} \)(biết góc giữa \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) bằng 45°).
Hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) cùng tác động lên một vật, cho \(\left| {\overrightarrow {{F_1}} } \right| = 7N,\left| {\overrightarrow {{F_2}} } \right| = 3N\). Tính độ lớn của hợp lực \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} \)(biết góc giữa \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) bằng 45°).
Câu 5:
Cho hình bình hành ABCD có một điểm O bất kì. Đẳng thức nào sau đây đúng?
Cho hình bình hành ABCD có một điểm O bất kì. Đẳng thức nào sau đây đúng?
Câu 7:
Tính tổng \(\overrightarrow {MN} + \overrightarrow {PQ} + \overrightarrow {RN} + \overrightarrow {NP} + \overrightarrow {QR} \)
Tính tổng \(\overrightarrow {MN} + \overrightarrow {PQ} + \overrightarrow {RN} + \overrightarrow {NP} + \overrightarrow {QR} \)
Câu 8:
Cho lục giác đều ABCDEF và O là tâm. Có bao nhiêu đẳng thức dưới đây là đẳng thức đúng?
1. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OE} = \overrightarrow 0 \);
II. \(\overrightarrow {BC} + \overrightarrow {FE} = \overrightarrow {AD} \);
III. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OE} = \overrightarrow {EB} \);
IV. \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {FE} = \overrightarrow 0 \).
Cho lục giác đều ABCDEF và O là tâm. Có bao nhiêu đẳng thức dưới đây là đẳng thức đúng?
1. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OE} = \overrightarrow 0 \);
II. \(\overrightarrow {BC} + \overrightarrow {FE} = \overrightarrow {AD} \);
III. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OE} = \overrightarrow {EB} \);
IV. \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {FE} = \overrightarrow 0 \).
Câu 9:
Cho hình bình hành ABCD. Hãy tìm điểm M để \(\overrightarrow {DM} = \overrightarrow {CB} + \overrightarrow {CD} \).
Cho hình bình hành ABCD. Hãy tìm điểm M để \(\overrightarrow {DM} = \overrightarrow {CB} + \overrightarrow {CD} \).
Câu 10:
Cho tam giác ABC vuông cân tại A, đường cao AH và BC = 10cm. Tính độ dài vectơ \(\overrightarrow {AB} + \overrightarrow {AC} \).
Cho tam giác ABC vuông cân tại A, đường cao AH và BC = 10cm. Tính độ dài vectơ \(\overrightarrow {AB} + \overrightarrow {AC} \).
Câu 11:
Cho hình vuông ABCD có cạnh bằng 1. So sánh độ dài của hai vectơ sau:
\[\overrightarrow a = \left( {\overrightarrow {AC} + \overrightarrow {B{\rm{D}}} } \right) + \overrightarrow {CB} \];
\[\overrightarrow b = \overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {BC} + \overrightarrow {DA} \].
Cho hình vuông ABCD có cạnh bằng 1. So sánh độ dài của hai vectơ sau:
\[\overrightarrow a = \left( {\overrightarrow {AC} + \overrightarrow {B{\rm{D}}} } \right) + \overrightarrow {CB} \];
\[\overrightarrow b = \overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {BC} + \overrightarrow {DA} \].
Câu 12:
Cho hình thoi ABCD có độ dài cạnh bằng 2 dm và \(\widehat {BAD} = 100^\circ \). Tính độ dài vectơ \(\overrightarrow {DA} + \overrightarrow {DC} \).
Cho hình thoi ABCD có độ dài cạnh bằng 2 dm và \(\widehat {BAD} = 100^\circ \). Tính độ dài vectơ \(\overrightarrow {DA} + \overrightarrow {DC} \).
Câu 13:
Cho hình bình hành ABCD tâm O. Ba điểm M, N, P thỏa mãn:
+) \[\overrightarrow {MA} + \overrightarrow {MD} + \overrightarrow {MB} = \overrightarrow 0 \];
+) \[\overrightarrow {N{\rm{D}}} + \overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 \];
+) \[\overrightarrow {PM} + \overrightarrow {PN} = \overrightarrow 0 \].
Nhận xét nào sau đây đúng về M, N, P.
Cho hình bình hành ABCD tâm O. Ba điểm M, N, P thỏa mãn:
+) \[\overrightarrow {MA} + \overrightarrow {MD} + \overrightarrow {MB} = \overrightarrow 0 \];
+) \[\overrightarrow {N{\rm{D}}} + \overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 \];
+) \[\overrightarrow {PM} + \overrightarrow {PN} = \overrightarrow 0 \].
Nhận xét nào sau đây đúng về M, N, P.
Câu 14:
Cho hình vuông ABCD có cạnh bằng a và ba điểm G, H, K thỏa mãn: \[\overrightarrow {K{\rm{A}}} + \overrightarrow {KC} = \overrightarrow 0 \]; \[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \]; \[\overrightarrow {HA} + \overrightarrow {H{\rm{D}}} + \overrightarrow {HC} = \overrightarrow 0 \]. Tính độ dài các vectơ \[\overrightarrow {GH} \].
Cho hình vuông ABCD có cạnh bằng a và ba điểm G, H, K thỏa mãn: \[\overrightarrow {K{\rm{A}}} + \overrightarrow {KC} = \overrightarrow 0 \]; \[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \]; \[\overrightarrow {HA} + \overrightarrow {H{\rm{D}}} + \overrightarrow {HC} = \overrightarrow 0 \]. Tính độ dài các vectơ \[\overrightarrow {GH} \].