Tổng C2019^1 + C2019^2 + C2019^3 + ... + C2019^1009 bằng: A. 2^2018 B. 2^2018 + 1 C. 2^2018 - 1 D. 2^2019
29
24/04/2024
Tổng \(C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{1009}\) bằng:
A. \({2^{2018}}\).
B. \({2^{2018}} + 1\).
C. \({2^{2018}} - 1\).
D. \({2^{2019}}\).
Trả lời
Đáp án C
Phương pháp:
Áp dụng \(C_n^0 + C_n^1 + ... + C_n^n = {2^n}\).
Cách giải:
Ta có: \(C_{2019}^0 + C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{2019} = {2^{2019}}\)
Mà \(C_{2019}^0 = C_{2019}^{2019} = 1,\,\,C_{2019}^1 = C_{2019}^{2018},\,C_{2019}^2 = C_{2019}^{2017},...,C_{2019}^{1009} = C_{2019}^{1010}\)
\( \Leftrightarrow 1 + C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{1009} + C_{2019}^{1010} + ... + C_{2019}^1 + 1 = {2^{2019}}\)
\( \Leftrightarrow 2 + 2\left( {C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{1009}} \right) = {2^{2019}}\)
\( \Leftrightarrow C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{1009} = {2^{2018}} - 1\).