Tính tổng n số hạng đầu của mỗi cấp số cộng sau: a) 3; 1; – 1; ... với n = 10; b) 1,2; 1,7; 2,2; ... với n = 15.

Tính tổng n số hạng đầu của mỗi cấp số cộng sau:

a) 3; 1; – 1; ... với n = 10;

b) 1,2; 1,7; 2,2; ... với n = 15.

Trả lời

Lời giải

a) Ta có: 3; 1; – 1; ... là cấp số cộng với số hạng đầu u1 = 3 và công sai d = 1 – 3 = – 2.

Khi đó u10 = 3 + (10 – 1).(– 2) = 3 + (– 18) = – 15.  

Tổng của 10 số hạng đầu của cấp số cộng là:

S10 = \(\frac{{10\left[ {3 + \left( { - 15} \right)} \right]}}{2} = - 60\).

b) 1,2; 1,7; 2,2; ... với n = 15.

Ta có: 1,2; 1,7; 2,2; ... là cấp số cộng với số hạng ban đầu u1 = 1,2 và công sai d = 1,7 – 1,2 = 0,5.

Khi đó u15 = 1,2 + (15 – 1).0,5 = 8,2.

Tổng của 15 số hạng đầu của cấp số cộng là:

S15 = \(\frac{{15\left[ {1,2 + 8,2} \right]}}{2} = 70,5\).

Câu hỏi cùng chủ đề

Xem tất cả