Tính đạo hàm của các hàm số sau: a) y=((2x -1)/(x+2))^5
Bài 9.25 trang 97 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:
a) y=(2x−1x+2)5 ;
b) y=2xx2+1 ;
c) y = exsin2x;
d) y = log(x+√x).
Bài 9.25 trang 97 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:
a) y=(2x−1x+2)5 ;
b) y=2xx2+1 ;
c) y = exsin2x;
d) y = log(x+√x).
a) Với x ≠ – 2, ta có
y'=5(2x−1x+2)4.(2x−1x+2)'=5(2x−1x+2)4.2(x+2)−(2x−1)(x+2)2
=5(2x−1x+2)4.5(x+2)2=25(2x−1)4(x+2)6.
b) Ta có
y'=(2x)'.(x2+1)−2x(x2+1)'(x2+1)2=2x2+2−4x2(x2+1)2=−2x2+2(x2+1)2.
c) Ta có
y' = (ex)' . sin2x + ex(sin2x)' = exsin2x + ex.2sinx.cosx = exsin2x + exsin2x.
d) Với x > 0, ta có:
y'=(x+√x)'(x+√x)ln10=1+12√x(x+√x)ln10=2√x+12√x(x+√x)ln10.
Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác: