Câu hỏi:
10/04/2024 39
Tìm x, biết: \[\frac{2}{{{\rm{x}} + 3}} + \frac{3}{{{{\rm{x}}^2} - 9}} = 0\,\,\,\left( {{\rm{x}} \ne \pm \,3} \right)\]
A. x = 0
B. \(x = \frac{1}{2}\)
C. x = 1
D. \[{\rm{x}} = \frac{3}{2}\]
Trả lời:
Lời giải
Đáp án đúng là: D
Ta có \[\frac{2}{{{\rm{x}} + 3}} + \frac{3}{{{{\rm{x}}^2} - 9}}\]\[ = \frac{2}{{{\rm{x}} + 3}} + \frac{3}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\]
\[ = \frac{{2\left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{3}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\]
\[ = \frac{{2\left( {x - 3} \right) + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2x - 6 + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2x - 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\]
Mà \[\frac{2}{{{\rm{x}} + 3}} + \frac{3}{{{{\rm{x}}^2} - 9}} = 0\] nên \[\frac{{2x - 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = 0\]
\[2x - 3 = 0\]
\[2x = 3\]
\[x = \frac{3}{2}\]
Vậy \[x = \frac{3}{2}\].
Lời giải
Đáp án đúng là: D
Ta có \[\frac{2}{{{\rm{x}} + 3}} + \frac{3}{{{{\rm{x}}^2} - 9}}\]\[ = \frac{2}{{{\rm{x}} + 3}} + \frac{3}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\]
\[ = \frac{{2\left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \frac{3}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\]
\[ = \frac{{2\left( {x - 3} \right) + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2x - 6 + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{2x - 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\]
Mà \[\frac{2}{{{\rm{x}} + 3}} + \frac{3}{{{{\rm{x}}^2} - 9}} = 0\] nên \[\frac{{2x - 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = 0\]
\[2x - 3 = 0\]
\[2x = 3\]
\[x = \frac{3}{2}\]
Vậy \[x = \frac{3}{2}\].