Câu hỏi:
10/04/2024 39
Giá trị của biểu thức \[A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + {\rm{ }}3}}{{8{x^2} - 4x}}\] với \[{\rm{x}} = \frac{1}{4}\] là
A. \[A = \frac{{11}}{2}\]
B. \[A = \frac{{13}}{2}\]
C. \[{\rm{A}} = \frac{{15}}{2}\]
D. \[{\rm{A}} = \frac{{17}}{2}\]
Trả lời:
Lời giải
Đáp án đúng là: D
\[A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + {\rm{ }}3}}{{8{x^2} - 4x}}\]
\[ = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2}}}{{4x\left( {2x - 1} \right)}}\]
\[ = \frac{{5\,.\,2\left( {2x - 1} \right)}}{{4x\left( {2x - 1} \right)}} + \frac{{4x\left( {2x - 3} \right)}}{{4x\left( {2x - 1} \right)}} + \frac{{4{x^2} + 3}}{{4x\left( {2x - 1} \right)}}\]
\[ = \frac{{20x - 10}}{{4x\left( {2x - 1} \right)}} + \frac{{8{x^2} - 12x}}{{4x\left( {2x - 1} \right)}} + \frac{{4{x^2} + 3}}{{4x\left( {2x - 1} \right)}}\]
\[ = \frac{{20x - 10 + 8{x^2} - 12x + 4{x^2} + 3}}{{4x\left( {2x - 1} \right)}} = \frac{{12{x^2} + 8x - 7}}{{4x\left( {2x - 1} \right)}}\]
\[ = \frac{{12{x^2} - 6x + 14x - 7}}{{4x\left( {2x - 1} \right)}} = \frac{{6x\left( {2x - 1} \right) + 7\left( {2x - 1} \right)}}{{4x\left( {2x - 1} \right)}}\]
\[ = \frac{{\left( {6x + 7} \right)\left( {2x - 1} \right)}}{{4x\left( {2x - 1} \right)}} = \frac{{6x + 7}}{{4x}}\].
Với \[{\rm{x}} = \frac{1}{4}\], ta có:
\[{\rm{A}} = \frac{{6 \cdot \frac{1}{4} + 7}}{{4 \cdot \frac{1}{4}}} = \frac{{\frac{3}{2} + 7}}{1} = \frac{3}{2} + 7 = \frac{3}{2} + \frac{{14}}{2} = \frac{{17}}{2}\].
Lời giải
Đáp án đúng là: D
\[A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + {\rm{ }}3}}{{8{x^2} - 4x}}\]
\[ = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2}}}{{4x\left( {2x - 1} \right)}}\]
\[ = \frac{{5\,.\,2\left( {2x - 1} \right)}}{{4x\left( {2x - 1} \right)}} + \frac{{4x\left( {2x - 3} \right)}}{{4x\left( {2x - 1} \right)}} + \frac{{4{x^2} + 3}}{{4x\left( {2x - 1} \right)}}\]
\[ = \frac{{20x - 10}}{{4x\left( {2x - 1} \right)}} + \frac{{8{x^2} - 12x}}{{4x\left( {2x - 1} \right)}} + \frac{{4{x^2} + 3}}{{4x\left( {2x - 1} \right)}}\]
\[ = \frac{{20x - 10 + 8{x^2} - 12x + 4{x^2} + 3}}{{4x\left( {2x - 1} \right)}} = \frac{{12{x^2} + 8x - 7}}{{4x\left( {2x - 1} \right)}}\]
\[ = \frac{{12{x^2} - 6x + 14x - 7}}{{4x\left( {2x - 1} \right)}} = \frac{{6x\left( {2x - 1} \right) + 7\left( {2x - 1} \right)}}{{4x\left( {2x - 1} \right)}}\]
\[ = \frac{{\left( {6x + 7} \right)\left( {2x - 1} \right)}}{{4x\left( {2x - 1} \right)}} = \frac{{6x + 7}}{{4x}}\].
Với \[{\rm{x}} = \frac{1}{4}\], ta có:
\[{\rm{A}} = \frac{{6 \cdot \frac{1}{4} + 7}}{{4 \cdot \frac{1}{4}}} = \frac{{\frac{3}{2} + 7}}{1} = \frac{3}{2} + 7 = \frac{3}{2} + \frac{{14}}{2} = \frac{{17}}{2}\].