Câu hỏi:
10/04/2024 35
Rút gọn biểu thức sau: \[A = \frac{{2{x^2} + {\rm{ }}x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1}} - \frac{7}{{x - 1}}\].
A. \[A = \frac{{ - 6{x^2} + {\rm{ }}2x - 15}}{{\left( {x - 1} \right)\left( {{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1} \right)}}\]
B. \[A = \frac{{6{x^2}}}{{\left( {x - 1} \right)\left( {{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1} \right)}}\]
C. \[A = \frac{{6{x^2} + {\rm{ }}15}}{{\left( {x - 1} \right)\left( {{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1} \right)}}\]
D. \[A = \frac{{ - 6{x^2} - 15}}{{\left( {x - 1} \right)\left( {{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1} \right)}}\]
Trả lời:
Lời giải
Đáp án đúng là: D
\[A = \frac{{2{x^2} + {\rm{ }}x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1}} - \frac{7}{{x - 1}}\]
\[ = \frac{{2{x^2} + x - 3}}{{{{\rm{x}}^{\rm{3}}} - {\rm{1}}}} - \left( {\frac{{x - 5}}{{{x^2} + x + 1}} + \frac{7}{{x - 1}}} \right)\]
\[ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \left[ {\frac{{\left( {x - 5} \right)\left( {x - 1} \right)}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}} + \frac{{7\left( {{x^2} + x + 1} \right)}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}} \right]\]
\[ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \left[ {\frac{{{x^2} - 5x - x + 5}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}} + \frac{{7{x^2} + 7x + 7}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}} \right]\]
\[ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{{x^2} - 5x - x + 5 + 7{x^2} + 7x + 7}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]
\[ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{8{x^2} + x + 12}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]
\[ = \frac{{\left( {2{x^2} + x - 3} \right) - \left( {8{x^2} + x + 12} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]
\[ = \frac{{2{x^2} + x - 3 - 8{x^2} - x - 12}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{ - 6{x^2} - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]
Lời giải
Đáp án đúng là: D
\[A = \frac{{2{x^2} + {\rm{ }}x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1}} - \frac{7}{{x - 1}}\]
\[ = \frac{{2{x^2} + x - 3}}{{{{\rm{x}}^{\rm{3}}} - {\rm{1}}}} - \left( {\frac{{x - 5}}{{{x^2} + x + 1}} + \frac{7}{{x - 1}}} \right)\]
\[ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \left[ {\frac{{\left( {x - 5} \right)\left( {x - 1} \right)}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}} + \frac{{7\left( {{x^2} + x + 1} \right)}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}} \right]\]
\[ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \left[ {\frac{{{x^2} - 5x - x + 5}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}} + \frac{{7{x^2} + 7x + 7}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}} \right]\]
\[ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{{x^2} - 5x - x + 5 + 7{x^2} + 7x + 7}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]
\[ = \frac{{2{x^2} + x - 3}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{8{x^2} + x + 12}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]
\[ = \frac{{\left( {2{x^2} + x - 3} \right) - \left( {8{x^2} + x + 12} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]
\[ = \frac{{2{x^2} + x - 3 - 8{x^2} - x - 12}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{ - 6{x^2} - 15}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]