Câu hỏi:
10/04/2024 36
Kết luận nào sau đây là đúng khi nói về giá trị của biểu thức \[{\rm{A}} = \frac{{10}}{{\left( {{\rm{x}} + 2} \right)\left( {3 - {\rm{x}}} \right)}} - \frac{{12}}{{\left( {3 - {\rm{x}}} \right)\left( {3 + {\rm{x}}} \right)}} - \frac{1}{{\left( {{\rm{x}} + 3} \right)\left( {{\rm{x}} + 2} \right)}}\] tại \[{\rm{x}} = - \frac{3}{4}\]?
A. 0 < A < 1
B. A = 0
C. A = 1
D. \[{\rm{A}} = \frac{7}{4}\]
Trả lời:
Lời giải
Đáp án đúng là: A
\[{\rm{A}} = \frac{{10}}{{\left( {{\rm{x}} + 2} \right)\left( {3 - {\rm{x}}} \right)}} - \frac{{12}}{{\left( {3 - {\rm{x}}} \right)\left( {3 + {\rm{x}}} \right)}} - \frac{1}{{\left( {{\rm{x}} + 3} \right)\left( {{\rm{x}} + 2} \right)}}\]
\[ = \frac{{10}}{{\left( {{\rm{x}} + 2} \right)\left( {3 - {\rm{x}}} \right)}} - \left[ {\frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} + \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}} \right]\]
\[ = \frac{{10}}{{\left( {{\rm{x}} + 2} \right)\left( {3 - {\rm{x}}} \right)}} - \left[ {\frac{{12\left( {x + 2} \right) + \left( {3 - x} \right)}}{{\left( {3 - x} \right)\left( {x + 3} \right)\left( {x + 2} \right)}}} \right]\]
\[ = \frac{{10}}{{\left( {{\rm{x}} + 2} \right)\left( {3 - {\rm{x}}} \right)}} - \left[ {\frac{{12x + 24 + 3 - x}}{{\left( {3 - x} \right)\left( {x + 3} \right)\left( {x + 2} \right)}}} \right]\]
\[ = \frac{{10}}{{\left( {{\rm{x}} + 2} \right)\left( {3 - {\rm{x}}} \right)}} - \frac{{11x + 27}}{{\left( {3 - x} \right)\left( {x + 3} \right)\left( {x + 2} \right)}}\]
\[ = \frac{{10\left( {x + 3} \right)}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} - \frac{{11x + 27}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}}\]
\[ = \frac{{10\left( {x + 3} \right) - \left( {11x + 27} \right)}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} = \frac{{10x + 30 - 11x - 27}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}}\]
\[ = \frac{{ - x + 3}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} = \frac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}}\]
Tại \[{\rm{x}} = - \frac{3}{4}\]ta có\[{\rm{A}} = \frac{1}{{\left( {\frac{{ - 3}}{4} + 2} \right)\left( {\frac{{ - 3}}{4} + 3} \right)}} = \frac{1}{{\frac{5}{4} \cdot \frac{9}{4}}} = \frac{1}{{\frac{{45}}{{16}}}} = \frac{{16}}{{45}}\]
Vậy 0 < A < 1.
Lời giải
Đáp án đúng là: A
\[{\rm{A}} = \frac{{10}}{{\left( {{\rm{x}} + 2} \right)\left( {3 - {\rm{x}}} \right)}} - \frac{{12}}{{\left( {3 - {\rm{x}}} \right)\left( {3 + {\rm{x}}} \right)}} - \frac{1}{{\left( {{\rm{x}} + 3} \right)\left( {{\rm{x}} + 2} \right)}}\]
\[ = \frac{{10}}{{\left( {{\rm{x}} + 2} \right)\left( {3 - {\rm{x}}} \right)}} - \left[ {\frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} + \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}} \right]\]
\[ = \frac{{10}}{{\left( {{\rm{x}} + 2} \right)\left( {3 - {\rm{x}}} \right)}} - \left[ {\frac{{12\left( {x + 2} \right) + \left( {3 - x} \right)}}{{\left( {3 - x} \right)\left( {x + 3} \right)\left( {x + 2} \right)}}} \right]\]
\[ = \frac{{10}}{{\left( {{\rm{x}} + 2} \right)\left( {3 - {\rm{x}}} \right)}} - \left[ {\frac{{12x + 24 + 3 - x}}{{\left( {3 - x} \right)\left( {x + 3} \right)\left( {x + 2} \right)}}} \right]\]
\[ = \frac{{10}}{{\left( {{\rm{x}} + 2} \right)\left( {3 - {\rm{x}}} \right)}} - \frac{{11x + 27}}{{\left( {3 - x} \right)\left( {x + 3} \right)\left( {x + 2} \right)}}\]
\[ = \frac{{10\left( {x + 3} \right)}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} - \frac{{11x + 27}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}}\]
\[ = \frac{{10\left( {x + 3} \right) - \left( {11x + 27} \right)}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} = \frac{{10x + 30 - 11x - 27}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}}\]
\[ = \frac{{ - x + 3}}{{\left( {3 - x} \right)\left( {x + 2} \right)\left( {x + 3} \right)}} = \frac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}}\]
Tại \[{\rm{x}} = - \frac{3}{4}\]ta có\[{\rm{A}} = \frac{1}{{\left( {\frac{{ - 3}}{4} + 2} \right)\left( {\frac{{ - 3}}{4} + 3} \right)}} = \frac{1}{{\frac{5}{4} \cdot \frac{9}{4}}} = \frac{1}{{\frac{{45}}{{16}}}} = \frac{{16}}{{45}}\]
Vậy 0 < A < 1.