Tìm tâm và bán kính của đường tròn (C) trong các trường hợp sau: a) (x – 2)^2 + (y – 8)^2 = 49

Bài 7.19 trang 41 SBT Toán 10 Tập 2: Tìm tâm và bán kính của đường tròn (C) trong các trường hợp sau:

a) (x – 2)2 + (y – 8)2 = 49;

b) (x + 3)2 + (y – 4)2 = 23.

Trả lời

Phương trình đường tròn có dạng: (x – a)2 + (y – b)2 = R2

Với (a; b) là tọa độ tâm I và R > 0 là bán kính của đường tròn

a)

Xét (x – 2)2 + (y – 8)2 = 49 có:

a = 2, b = 8, R2 = 49 ⇒ R = 7

Vậy đường tròn (C) có tâm I(2; 8) và bán kính R = 7.

b)

Xét(x + 3)2 + (y – 4)2 = 23 có:

a = –3, b = 4, R2 = 23 ⇒ R =  23

Vậy đường tròn (C) có tâm I(–3; 4) và bán kính R = 23 .

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 19: Phương trình đường thẳng

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Bài 21: Đường tròn trong mặt phẳng tọa độ

Bài 22: Ba đường conic

Bài tập cuối chương 7

Bài 23: Quy tắc đếm

Câu hỏi cùng chủ đề

Xem tất cả