Cho đường tròn (C), đường thẳng Δ có phương trình lần lượt là: (x – 1)^2 + (y + 1)^2 = 2; x + y + 2 = 0

Bài 7.25 trang 42 SBT Toán 10 Tập 2: Cho đường tròn (C), đường thẳng Δ có phương trình lần lượt là:

(x – 1)2 + (y + 1)2 = 2; x + y + 2 = 0.

a) Chứng minh rằng Δ là một tiếp tuyến của đường tròn (C).

b) Viết phương trình tiếp tuyến d của (C), biết rằng d song song với đường thẳng Δ.

Trả lời

Đường tròn (C): (x – 1)2 + (y + 1)2 = 2 có

tâm I(1; –1)

bán kính R2 = 2 ⇒ R=2 .

a)

Khoảng cách từ I đến đường thẳng Δ là

dI,Δ=11+212+12=2

Ta có d(I, Δ) = R, do đó Δ là một tiếp tuyến của (C).

b)

Vì đường thẳng d song song với đường thẳng Δ nên phương trình đường thẳng d có dạng x + y + m = 0, trong đó m ≠ 2.

Để d là tiếp tuyến của (C) khi và chỉ khi

dI,d=R11+m12+12=2 ⇔ |m| = 2 ⇔ m = ± 2

Mà m ≠ 2 nên m = –2

Vậy phương trình của đường thẳng d là x + y – 2 = 0.

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 19: Phương trình đường thẳng

Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Bài 21: Đường tròn trong mặt phẳng tọa độ

Bài 22: Ba đường conic

Bài tập cuối chương 7

Bài 23: Quy tắc đếm

Câu hỏi cùng chủ đề

Xem tất cả